LE CORPS DES QUATERNIONS - TH. DE LAGRANGE

On doit à Hamilton, mathématicien irlandais du 19ème s., la théorie des quaternions.

Soit $\mathbb{H} = \mathbb{C} \times \mathbb{C}$. On définit dans \mathbb{H} les lois + et \times par:

$$\forall (z_1, z_2) \in \mathbb{H} \quad \forall (z'_1, z'_2) \in \mathbb{H} \quad \begin{cases} (z_1, z_2) + (z'_1, z'_2) &= (z_1 + z'_1, z_2 + z'_2) \\ (z_1, z_2) \times (z'_1, z'_2) &= (z_1 z'_1 - z_2 \overline{z'_2}, z_1 z'_2 + z_2 \overline{z'_1}) \end{cases}$$

Les éléments de H s'appellent les quaternions.

PARTIE A:

- 1°) Montrer que $(\mathbb{H}, +, \times)$ est un anneau non commutatif.
- **2°)** Soit $\phi : \mathbb{R} \longrightarrow \mathbb{H}$ définie par : $\forall x \in \mathbb{R}$, $\phi(x) = (x,0)$.
 - a) Montrer que ϕ est un morphisme injectif d'anneaux. Ce morphisme permet donc d'identifier tout réel x à son image $\phi(x)$; on notera alors, pour tout x réel: (x,0) = x. Un quaternion de la forme (x,0) avec x réel sera dit <u>réel</u>.
 - **b)** Montrer que: $\forall x \in \mathbb{R}, \ \forall q \in \mathbb{H}, \ qx = xq \ (attention: compte tenu de la remarque précédente, il faut comprendre <math>(x,0) \times q$ pour xq etc...).
 - c) On pose: $e_0 = (1,0)$ (soit $e_0 = 1$), $e_1 = (i,0)$, $e_2 = (0,1)$, et $e_3 = (0,i)$. Démontrer que, pour tout $q \in \mathbb{H}$, il existe un et un seul quadruplet $(x_0,x_1,x_2,x_3) \in \mathbb{R}^4$ tel que $q = x_0e_0 + x_1e_1 + x_2e_2 + x_3e_3$. A quelle condition sur (x_0,x_1,x_2,x_3) ce quaternion est-il réel?
 - On dira que q est un <u>quaternion pur</u> si $x_0 = 0$. On note \mathbb{P} l'ensemble des quaternions purs.
 - d) Calculer les produits $e_i e_j$ pour $i, j \in \{0,1,2,3\}$ (on présentera les résultats sous forme d'un tableau). En déduire, pour $x_0, x_1, x_2, x_3, y_0, y_1, y_2, y_3$ réels, une expression du produit $(x_0 e_0 + x_1 e_1 + x_2 e_2 + x_3 e_3) \times (y_0 e_0 + y_1 e_1 + y_2 e_2 + y_3 e_3)$.
 - e) Démontrer que les seuls quaternions qui commutent avec tous les autres sont les réels.
- **3°)** Pour λ réel et $q=(z_1,z_2)\in\mathbb{H}$, on pose $\lambda.q=(\lambda z_1,\lambda z_2)$. Comparer $\lambda.q$ et λq ; en déduire que $(\mathbb{H},+,\times,.)$ est une \mathbb{R} -algèbre. Quelle est la dimension du \mathbb{R} -espace vectoriel $(\mathbb{H},+,.)$?
- **4°)** Pour tout quaternion $q = x_0e_0 + x_1e_1 + x_2e_2 + x_3e_3$ $(x_i \in \mathbb{R})$, on appelle <u>conjugué</u> de q le quaternion $\overline{q} = x_0e_0 x_1e_1 x_2e_2 x_3e_3$, et <u>norme</u> de q le quaternion $N(q) = q\overline{q}$.
 - a) Vérifier que, pour tout $q \in \mathbb{H}$, $q + \overline{q} \in \mathbb{R}$ et $q \overline{q} \in \mathbb{P}$.
 - b) Montrer que l'application $q \mapsto \overline{q}$ est un automorphisme du \mathbb{R} -espace vectoriel $(\mathbb{H}, +, .)$.
 - c) Montrer que: $\forall (q,q') \in \mathbb{H}^2 \quad \overline{qq'} = \overline{q'}\overline{q}$.
 - d) Montrer que, pour tout $q \in \mathbb{H}$, N(q) est un réel positif, et que N(q) = 0 si et seulement si q = 0.
 - e) Montrer que $\forall (q,q') \in \mathbb{H}^2$ N(qq') = N(q'q) = N(q)N(q').
 - f) Démontrer que, si $q \in \mathbb{H}$ et $q \neq 0$, alors q est inversible, et exprimer son inverse en fonction de N(q) et de \overline{q} . Que peut-on en conclure pour la structure de $(\mathbb{H}_{+},+,\times)$?
- **5°)** a) Montrer que, pour tout $q \in \mathbb{H} : q \in \mathbb{R} \iff q = \overline{q}$ et que : $q \in \mathbb{P} \iff q = -\overline{q}$.
 - **b)** Montrer que, pour tout $q \in \mathbb{H}$: $q \in \mathbb{R} \iff q^2 \in \mathbb{R}_+$.

- c) Montrer que, pour tout $q \in \mathbb{H} \setminus \mathbb{R}$, $a = q + \overline{q}$ et $b = q\overline{q}$ sont les seuls réels tels que $q^2 - aq + b = 0$ (on pourra montrer que, a et b étant réels, si $a \neq q + \overline{q}$ et si $q^2 - aq + b = 0$,
 - En déduire, pour tout $q \in \mathbb{H} : q \in \mathbb{P} \iff q^2 \in \mathbb{R}_-$.

PARTIE B:

Le but de cette partie est de caractériser les automorphismes du corps $(\mathbb{H}, +, \times)$. On notera $Aut(\mathbb{H})$ l'ensemble de ces automorphismes.

- 1°) Montrer que Aut(\mathbb{H}, \mathbf{o}) est un groupe.
- 2°) Soit $\sigma \in Aut(\mathbb{H})$.
 - a) Montrer que: $\forall r \in \mathbb{Q}$, $\sigma(r) = r$.
 - b) En utilisant A.2.e, montrer que $\sigma(\mathbb{R}) \subset \mathbb{R}$.
 - c) Montrer que $\sigma(\mathbb{R}_+) \subset \mathbb{R}_+$, et en déduire que la restriction de σ à \mathbb{R} est une application croissante de \mathbb{R} dans \mathbb{R} .
 - d) Montrer que: $\forall x \in \mathbb{R}$, $\sigma(x) = x$ (utiliser des approximations de x par des rationnels).
 - e) En utilisant A.5.c, montrer que: $\sigma(\mathbb{P}) \subset \mathbb{P}$.
 - **f)** Montrer que, pour tout $q \in \mathbb{H}$, $\sigma(q) + \sigma(\overline{q}) \in \mathbb{R}$ et que $\sigma(q) \sigma(\overline{q}) \in \mathbb{P}$.

En déduire que : $\sigma(\overline{q}) = \overline{\sigma(q)}$, puis que $N(\sigma(q)) = N(q)$.

- **3°)** Pour tout $a \in \mathbb{H}$, $a \neq 0$, on définit $\phi_a : \mathbb{H} \longrightarrow \mathbb{H}$ par : $\phi_a(q) = aqa^{-1}$.

 - a) Montrer que, pour tout $a \in \mathbb{H}$, $a \neq 0$, ϕ_a est élément de $\operatorname{Aut}(\mathbb{H})$. b) Montrer que l'application $\Phi : \begin{cases} (\mathbb{H} \setminus \{0\}, \times) & \longrightarrow & (\operatorname{Aut}(\mathbb{H}), \mathbf{o}) \\ a & \longmapsto & \phi_a \end{cases}$ est un morphisme de groupes. Quel est son noyau

On se propose, dans la fin de cette partie, de montrer que Φ est surjectif, c'est-à-dire que tous les automorphismes du corps \mathbb{H} sont de la forme ϕ_a . Pour cela, considérons un automorphisme $\sigma de (\mathbb{H}, +, \times)$

- **4°**) On va montrer, dans cette question, qu'il existe $a \in \mathbb{H} \setminus \{0\}$ tel que $\phi_a \mathbf{o} \sigma(e_1) = e_1$.
 - a) Montrer que $(\sigma(e_1))^2 = -1$.
 - **b)** Montrer que $(\sigma(e_1)e_1 1)e_1 = \sigma(e_1)(\sigma(e_1)e_1 1)$. En déduire un élément a qui répond à la question dans le cas où $\sigma(e_1)e_1 \neq 1$.
 - c) Si $\sigma(e_1)e_1=1$, montrer que $\sigma(e_1)=-e_1$, et déterminer un élément a qui répond à la question.
- 5°) Soi $\sigma' = \phi_a \mathbf{o} \sigma$. On se propose de montrer qu'il existe $b \in \mathbb{H} \setminus \{0\}$ tel que $\phi_b \mathbf{o} \sigma'(e_1) = e_1$ et $\phi_b \mathbf{o} \sigma'(e_2) = e_2$.
 - a) Montrer que $(\sigma'(e_2)e_2 1)e_1 = \sigma'(e_1)(\sigma'(e_2)e_2 1)$ (remarquer que $\sigma'(e_1) = e_1$). En déduire un élément b qui convient dans le cas où $\sigma'(e_2)e_2 \neq 1$.
 - **b)** Si $\sigma'(e_2)e_2=1$, montrer que l'on peut prendre $b=e_1$.
- **6°)** Soit σ " = $\phi_b \mathbf{o} \phi_a \mathbf{o} \sigma$.
 - a) Montrer que σ " $(e_3) = e_3$.
 - **b)** En déduire que σ " = $\mathrm{Id}_{\mathbb{H}}$, et conclure.

PARTIE C:

Le but de cette partie est de donner une interprétation géométrique des quaternions. Pour cela, on notera \mathcal{E} un espace vectoriel euclidien de dimension 3, rapporté à une base orthonormale directe $(\vec{i}, \vec{j}, \vec{k})$. On rappelle que, si deux vecteurs \vec{U} et \vec{V} ont respectivement pour coordonnées (x_1, x_2, x_3) et (y_1, y_2, y_3) dans cette base, le produit scalaire $\vec{U}.\vec{V}$ est le réel $x_1y_1 + x_2y_2 + x_3y_3$, et le produit vectoriel $\vec{U} \wedge \vec{V}$ est le vecteur de coordonnées $(x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1)$.

A tout quaternion $q = x_0e_0 + x_1e_1 + x_2e_2 + x_3e_3$ (x_i réels), on associe le couple $\Psi(q) = (x_0, \vec{U})$ de $\mathbb{R} \times \mathcal{E}$, où \vec{U} est le vecteur de coordonnées (x_1, x_2, x_3) .

- $\mathbf{1}^{\circ}$) Vérifier que Ψ est un isomorphisme du \mathbb{R} -espace vectoriel \mathbb{H} dans le \mathbb{R} -espace vectoriel $\mathbb{R} \times \mathcal{E}$.
- 2°) Soient q et q' deux quaternions. On pose $\Psi(q)=(x_0,\vec{U})$ et $\Psi(q')=(y_0,\vec{V})$.
 - a) Vérifier que : $\Psi(qq') = (x_0y_0 \vec{U}.\vec{V}, x_0\vec{V} + y_0\vec{U} + \vec{U} \wedge \vec{V}).$
 - b) Retrouver ainsi la formule du double produit vectoriel:

$$\forall (\vec{U}, \vec{V}, \vec{W}) \in \mathcal{E}^3 , (\vec{U} \wedge \vec{V}) \wedge \vec{W} = (\vec{U}.\vec{W})\vec{V} - (\vec{V}.\vec{W})\vec{U}$$

- **3°)** Donner une condition nécessaire et suffisant portant sur $\Psi(q)$ pour que q soit un quaternion pur. Comment interpréter N(q) dans ce cas?
- 4°) On suppose ici que q et q' qu'elle sont deux quaternions purs. Démontrer que les vecteurs \vec{U} et \vec{V} associés à q et q' sont orthogonaux si et seulement si : qq' = -q'q.

PARTIE C:

Le but de cette partie est de démontrer le théorème de Lagrange: Tout entier positif est somme de quatre carrés (dont certains peuvent être nuls).

- 1°) a) Démontrer que l'ensemble $\mathbb{H}(\mathbb{Q})$ des quaternions de la forme $q = x_0e_0 + x_1e_1 + x_2e_2 + x_3e_3$ avec x_0, x_1, x_2, x_3 dans \mathbb{Q} est un sous-corps de \mathbb{H} .
 - **b)** Démontrer que l'ensemble $\mathbb{H}(\mathbb{Z})$ des quaternions de la forme $q = x_0e_0 + x_1e_1 + x_2e_2 + x_3e_3$ avec x_0, x_1, x_2, x_3 dans \mathbb{Z} est un sous-anneau de \mathbb{H} .
 - c) Déduire alors de A.4.e que tout produit de somme de quatre carrés d'entiers est somme de quatre carrés d'entiers.
- **2°) a)** Soit W l'ensemble des quaternions $q = x_0e_0 + x_1e_1 + x_2e_2 + x_3e_3$ avec $(x_0, x_1, x_2, x_3) \in \mathbb{Z}^4$ ou $(x_0, x_1, x_2, x_3) \in (\frac{1}{2} + \mathbb{Z})^4$.

Démontrer que W est un sous-anneau de \mathbb{H} (appelé anneau des quaternions d'Hurwitz).

- **b)** Vérifier que, si $q \in W$, alors $\overline{q} \in W$, $q + \overline{q} \in \mathbb{Z}$, et $N(q) \in \mathbb{Z}$.
- c) Démontrer que $q \in W$ est inversible dans W si et seulement si N(q) = 1.
- d) Démontrer que, pour tout quaternion $q \in \mathbb{H}(\mathbb{Q})$ il existe un quaternion $a \in W$ tel que N(q-a) < 1. En déduire que, pour tous quaternions $a \in W$ et $q \in W$, il existe deux couples (b,r) et (b',r') de quaternions de W (non nécessairement uniques!) tels que:

$$a = bq + r$$
 , $a = qb' = r'$, avec $N(r) < N(q)$ et $N(r') < N(q')$

e) Soit I un idéal à droite (resp. à gauche) de W. Démontrer que I est principal.

- 3°) Soit p un nombre premier impair.
 - a) Dans le corps Z/pZ, on considère la relation binaire \mathcal{R} définie par : $x\mathcal{R}y \iff y^2 = x^2$. Démontrer qu'il s'agit d'une relation d'équivalence. Quelle est la classe d'équivalence d'un élément x? En déduire que le nombre de carrés dans Z/pZ est égal à $\frac{p+1}{2}$.
 - b) En déduire qu'il existe a et b éléments de \mathbb{Z} tels que $a^2 + b^2 + 1$ soit divisible par p.
 - c) Soient a et b déterminés comme ci-dessus. Soit alors I l'idéal à gauche de W engendré par p et $1+ae_1+be_2$ ($I=Wp+W(1+ae_1+be_2)$). Démontrer que I est distinct de W et de Wp. En déduire qu'il existe q, non inversible dans W, tel que I=Wq. Montrer ensuite qu'il existe $q' \in W$, non inversible dans W, tel que p=q'q. En déduire N(q)=p.
 - d) En déduire qu'il existe un élément $q'' \in \mathbb{H}(\mathbb{Z})$ tel que N(q'') = p.
- 4°) Conclure.