QCM de mathématiques, Concours ENAC Pilotes, Année 1995.

Question $n^{\circ}01$:

t est C^1 sur \mathcal{I}' et

$$\forall u \in \mathcal{I}', t'(u) = \frac{1}{2} \left(1 + \frac{1}{u^2} \right).$$

De plus $\lim_{u \to +\infty} t(u) = +\infty$, donc :

R'eponse: a et b.

Question $n^{\circ}02$:

t est C^2 sur \mathcal{I}' et

$$\forall u \in \mathcal{I}', t''(u) = -\frac{1}{u^3} < 0.$$

Donc t est concave. De plus, $t(u) = \frac{1}{2}(u + o(1))$, donc son graphe admet une asymptote oblique d'équation : $y = \frac{x}{2}$ (la courbe est clairement sous son asymptote).

 $R\'{e}ponse$: b et c.

Question $n^{\circ}03$:

Comme $\lim_{t \to \infty} t = -\infty$, avec la question **01**, t est un homéomorphisme croissant de \mathcal{I}' dans \mathbb{R} . De plus, pour $(t,u) \in \mathbb{R} \times \mathcal{I}' : t(u) = t \iff u^2 - 2tu - 1 = 0 \iff u = t \pm \sqrt{t^2 + 1}$. Or u > 0, donc $t(u) = t \iff u = t + \sqrt{t^2 + 1}$.

 $R\'{e}ponse$: a et c.

Question $n^{\circ}04$:

Soit $(t, u) \in \mathcal{I} \times]0, 1] : f(t) = u \iff t^2 + 1 = \frac{1}{u^2} \iff t = \sqrt{\frac{1}{u^2} - 1} \text{ (et c) et d) représentent la même fonction qui n'est pas solution).}$

Réponse: a et b.

Question $n^{\circ}05$:

 $\forall t \in \mathcal{I} \ f''(t) = \frac{2t^2 - 1}{(1 + t^2)^{\frac{5}{2}}}$. Le point d'inflexion est en $\left(\frac{1}{\sqrt{2}}, \sqrt{\frac{2}{3}}\right)$. La courbe est convexe pour $t \ge \frac{1}{\sqrt{2}}$ et y = 0 est asymptote.

Réponse: c.

Question $n^{\circ}06$:

A a pour coordonnées (0,1) et B a pour coordonnées $(1,\frac{1}{\sqrt{2}})$, donc D a pour équation cartésienne $\left(1-\frac{1}{\sqrt{2}}\right)x+y-1=0$. Ainsi le point d'abscisse t de \mathcal{F}' appartient à D si et seulement si $f(t)=1+\left(\frac{1}{\sqrt{2}}-1\right)t$. Posons $g(t)=f(t)-1+\left(1-\frac{1}{\sqrt{2}}\right)t$.

$$g'(t) = -\frac{t}{(1+t^2)^{\frac{3}{2}}} + \left(1 - \frac{1}{\sqrt{2}}\right) \text{ et } g''(t) = \frac{2t^2 - 1}{(1+t^2)^{\frac{5}{2}}}.$$

Ainsi g' est décroissante sur $\left[0,\frac{1}{\sqrt{2}}\right]$ avec g'(0)>0 et $g'\left(\frac{1}{\sqrt{2}}\right)<0$, puis est croissante sur $\left[\frac{1}{\sqrt{2}},1\right]$ avec $g'(1)=1-\frac{3}{2\sqrt{2}}<0$. Donc il existe un unique $\alpha\in\left]0,\frac{1}{\sqrt{2}}\right[$ tel que :

$$\forall t \in [0, \alpha[\ g'(t) > 0 \text{ et } \forall t \in]\alpha, 1]\ g'(t) < 0.$$

Donc g est strictement croissante sur $[0, \alpha]$ avec g(0) = 0 puis strictement décroissante sur $[\alpha, 1]$ avec g(1) = 0. Ainsi $\forall t \in]0, 1[$ g(t) > 0. Donc D et \mathcal{F}' n'ont en commun que les points A et B. De plus $g'(1) \neq 0$ et $g'\left(\frac{1}{\sqrt{2}}\right) \neq 0$, donc c et d sont fausses.

R'eponse: b.

Question $n^{\circ}07$:

G est continuement dérivable et G'=g. Même si l'on suppose que g est monotone, elle peut changer de signe (prendre par exemple g(x)=x-1) donc c et d sont fausses.

 $R\'{e}ponse$: b.

Question $n^{\circ}08$:

t n'est pas définie sur \mathcal{I} donc a et b sont fausses. Cependant pour $x \in \mathcal{I}'$ t est une application C^1 de $[1, t^{-1}(x)]$ dans [0, x] et le changement de variable est donc possible. $dt = \frac{1}{2} \left(1 + \frac{1}{u^2}\right) du$. Un calcul simple montre alors que d est vraie.

 $R\'{e}ponse$: d.

Question $n^{\circ}09$:

Ce changement de variable donne donc :

$$F(x) = \int_{1}^{x+\sqrt{1+x^2}} \frac{du}{u} = h(x) = -\ln(-x + \sqrt{1+x^2}) = argsh(x).$$

 $R\'{e}ponse$: c.

Question $n^{\circ}10$:

Pour
$$x > 0$$
 $v(x) = x \left(1 + \sqrt{1 + \frac{1}{x^2}} \right) = x \left(1 + \left(1 + \frac{1}{2x^2} - \frac{1}{8x^4} + o\left(\frac{1}{x^4}\right) \right) \right)$ donc :
$$v(x) = 2x + \frac{1}{2x} - \frac{1}{8x^3} + o\left(\frac{1}{x^3}\right).$$

Réponse: a et d.

Question $n^{\circ}11$:

Au voisinage de $+\infty$, $h(x) = \ln(2x(1+o(1))) = \ln 2 + \ln x + o(1)$, donc \mathcal{H} admet la courbe asymtote d'équation $y = \ln x + \ln 2$.

De plus au voisinage de $-\infty$, $v(x) = -\frac{1}{2x} + o\left(\frac{1}{x}\right)$, donc $h(x) = -\ln(-x) - \ln(2) + o(1)$. Réponse : e.

Question $n^{\circ}12$:

R'eponse : b et c.

Question $n^{\circ}13$:

R'eponse: a et c.

Question $n^{\circ}14$:

 $\vec{u} \in Im(\varphi)$ si et seulement si le système $A\vec{v} = \vec{u}$ admet des solutions, or ce système est équivalent à celui de matrice S', donc a est vraie.

 $\vec{u} \in Ker(\varphi)$ si et seulement si \vec{u} vérifie $A\vec{u} = 0$ qui est équivalent au système du d) d'après la question précédente.

 $R\'{e}ponse$: a et d.

Question $n^{\circ}15$:

$$\vec{u} \in Im(\varphi) \cap Ker(\varphi) \iff \begin{cases} 2x & -3y & -z & = 0 \\ x & -y & +t & = 0 \\ 7x & -13y & -7z & +t & = 0 \\ 2y & +2t & = 0 \end{cases}.$$

Effectuons sur le déterminant D de ce système l'opération $C_2 \leftarrow C_2 - C_4$ puis développons selon la dernière ligne. On obtient :

$$D = 2 \begin{vmatrix} 2 & -3 & -1 \\ 1 & -2 & 0 \\ 7 & -14 & -7 \end{vmatrix}.$$

On effectue ensuite $L_3 \leftarrow L_3 - 7L_1$, puis on développe selon la première colonne. On obtient :

$$D = -2 \begin{vmatrix} 1 & -2 \\ -7 & 7 \end{vmatrix} = 14 \neq 0.$$

Donc $Im(\varphi) \cap Ker(\varphi) = \{0\}$ d'où d) puis b).

 $R\'{e}ponse$: b et d.

Question $n^{\circ}16$:

0 est une valeur propre si et seulement si $Dim(Ker\psi) > 0$. Ainsi a est fausse. b est faux d'après le cours. Si $\psi(x) = 0$ alors $\psi^2(x) = 0$, donc c est vraie. Cependant d est fausse : $\psi = 0$ en est un contrexemple.

Réponse: c.

Question $n^{\circ}17$:

Réponse: a et c.

Question $n^{\circ}18$:

R'eponse: b et c.

Question $n^{\circ}19$:

On vérifie que A(A-I)(A+2I)=0 (c'est en fait connu car A est diagonalisable). Donc $A^3 = -A^2 + 2A$ et on en déduit c par récurrence.

Réponse: b et c.

Question $n^{\circ}20$:

b est vrai d'après le cours. Le quotient de la division euclidienne d'un polynôme à coefficients entiers par un polynôme unitaire est un polynôme à coefficients entiers. Ainsi Q, et donc R, sont à coefficients entiers.

Dans l'égalité $X^n = X(X-1)(X+2)Q + R$, on substitue X par 0, puis 1 et -2. On obtient ainsi le système suivant :

$$\begin{cases} \alpha & \gamma = 0 \\ \alpha & +\beta & +\gamma = 1 \\ 4\alpha & -2\beta & +\gamma = (-2)^n \end{cases}.$$

Réponse : b et c.

Question $n^{\circ}21$:

Le système de la question précédente donne :

$$\alpha = \frac{1 - (-2)^{n-1}}{3}$$
 et $\beta = \frac{2 + (-2)^{n-1}}{3}$.

On en déduit que $2\alpha - \beta = -(-2)^{n-1}$.

Réponse: b.

Question $n^{\circ}22$:

 ζ est une bijection strictement croissante et C^{∞} de \mathcal{U} dans $[2\ln(3), +\infty[$.

 $R\'{e}ponse: a.$

Question $n^{\circ}23$:

 $\forall x \in \mathcal{U} \ \zeta'(x) = \frac{2}{1+x} \leq \frac{2}{3}$, ainsi a est vraie et b est fausse. $u_1 = 2\ln(3) > 2 = u_0 : \zeta$ étant strictement croissante, on en déduit que (u_n) est une suite définie et strictement croissante.

Réponse: a et d.

Question $n^{\circ}24$:

Si l'on avait $\zeta(x) = x + 1$, (u_n) serait divergente alors que ζ' est bornée, donc a est fausse. Si l'on avait $\zeta(x) = \frac{x}{2}$, (u_n) serait convergente alors que ζ n'est pas bornée, donc b est

On vérifie que $2,449 < u_4 < 2,450$ mais que $u_5 > 2,476$.

 $R\'{e}ponse$: c.

Question $n^{\circ}25$:

$$(1) \iff 2\ln(\frac{x}{x-1}) - \frac{1}{x-1} = 0 \iff -2\ln(1-\frac{1}{x}) - \frac{1}{x-1} = 0$$

(1) \iff $2\ln(\frac{x}{x-1}) - \frac{1}{x-1} = 0 \iff -2\ln(1-\frac{1}{x}) - \frac{1}{x-1} = 0.$ Posons $u(x) = 2\ln(1-\frac{1}{x}) + \frac{1}{x-1}.$ Remarquons que $u(x) = \frac{1}{x-1}\left(2(x-1)\ln(x-1) - 2(x-1)\ln x + 1\right)$, donc $\lim_{x\to 1} u(x) = \frac{1}{x-1}\left(2(x-1)\ln(x-1) - 2(x-1)\ln x + 1\right)$ $+\infty$.

u est C^{∞} sur \mathcal{I} et $u'(x) = \frac{x-2}{x(x-1)^2}$. Donc u est strictement décroissante sur [1,2] avec $\lim_{x\to 1} u(x) = +\infty$ et u(1.5) < 0. Donc il existe un unique $l \in]1,1.5]$ tel que u(l)=0 mais l'équation u(x) = 0 n'admet aucune solution entre 1.5 et 2.

 $R\'{e}ponse$: a.

Remarque: Soit $X \in \mathcal{U}$, $x = \frac{1}{X} + 1 \in]1, 1.5]$, donc $(1) \iff X = \frac{1}{l-1}$. ζ est croissante et $u_0 < \frac{1}{l-1}$: On en déduit par récurrence que (u_n) est majorée par $\frac{1}{l-1}$. Comme elle est strictement croissante elle converge dans \mathbb{R} et sa limite est un point fixe, donc u_n converge vers $\frac{1}{l-1}$. La question 23 montrait la contractance de ζ et donc la convergence de u_n .

Question $n^{\circ}26$:

Réponse: b et c.

Question $n^{\circ}27$:

D'après l'étude de u effectuée à la question 25, a est vraie. On en déduit que f' admet un unique zéro sur \mathcal{I} .

 $R\'{e}ponse$: a.

Question $n^{\circ}28$:

$$f(x) = x^2 \left(-\frac{1}{x} - \frac{1}{2x^2} - \frac{1}{3x^3} + o\left(\frac{1}{x^3}\right) \right) = -x - \frac{1}{2} - \frac{1}{3x} + o\left(\frac{1}{x}\right).$$

Question $n^{\circ}29$:

b est vraie d'après la question 27. De plus \mathcal{F} admet exactement deux asymptotes, d'équation : x=1 et $y=-x-\frac{1}{2}$.

Réponse : b et c.

Question $n^{\circ}30$:

Pour a comme pour b, l'asymptote oblique n'est pas correctement positionnée.

Au voisinage de $+\infty$, $f(x) + x \sim -\frac{1}{2}$, ce qui prouve d. Remarquons cependant que l'inégalité de convexité classique $\forall u \in]-1, +\infty[\setminus\{0\}, \ln(1+u) < u \text{ montre que } \forall x \in \mathcal{I}$

$$f(x) < x^2 \cdot \frac{-1}{x} = -x.$$

 $R\'{e}ponse$: d.

Question $n^{\circ}31$:

Soit x > 0: $\sqrt{x} > 0$ donc $\varphi(\sqrt{x}) > 0$.

 $R\'{e}ponse$: a.

Question $n^{\circ}32$:

D'après la remarque de la question 30 (stricto sensu a) $\Longrightarrow c$)), on a :

Réponse: a et c.

Question $n^{\circ}33$:

x > 1 donc l'intégrale est bien définie. J(2) = 0 donc c et d sont fausses. Une primitive de $e^{-\sqrt{t}}$ est $-2(1+\sqrt{t})e^{-\sqrt{t}}$.

 $R\'{e}ponse$: a.

Question $n^{\circ}34$:

a est vraie et b est en contradiction avec la question 32. D'après cette dernière, pour $x \ge 2$, $I(x) \le J(x)$. Ainsi d) est vraie. C'est suffisant puisqu'il y a au plus deux réponses exactes.

 $R\'{e}ponse$: a et d.

Remarque: Supposons que c est vraie. Alors pour $x \ge 2$, I(x) = J(x). Par dérivation on obtient: $\forall x \ge 2$ $e^{x \ln\left(1 - \frac{1}{\sqrt{x}}\right)} = e^{-\sqrt{x}}$, ce qui est faux. Ainsi c) est fausse.

Question $n^{\circ}35$:

$$\left(1 - \frac{1}{\sqrt{n}}\right)^n = e^{n\left(-\frac{1}{\sqrt{n}} - \frac{1}{2n} + o\left(\frac{1}{n}\right)\right)} = e^{-\sqrt{n} - \frac{1}{2} + o(1)}.$$

 $R\'{e}ponse$: b et d.

Question $n^{\circ}36$:

Comme $A = B^2$, B commute avec A.

R'eponse: a et c.

Question $n^{\circ}37$:

Il est facile de construire des contrexemples pour a) et b).

R'eponse: c.

Question $n^{\circ}38$:

Les matrices étant triangulaires inférieures, leurs valeurs propres sont les éléments de leur diagonale. Elles sont toutes simples, donc A et B sont diagonalisables.

R'eponse : b et c.

Question $n^{\circ}39$:

P est inversible et

$$P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{2}{3} & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}.$$

On vérifie ensuite que seule c est vraie.

Réponse: c.

Question $n^{\circ}40$:

On a:

$$D_1 = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad D_2 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $R\'{e}ponse$: a et c.

Remarques:

- De façon générale, une calculette performante favorise beaucoup le candidat,
- il y a des questions "piège", (résultat d'un long calcul correct à un signe près, à un inverse près ...),
 - Certaines sont mal posées (8),
 - on ne termine pas l'étude de la suite u_n ,
 - les questions sur la diagonalisation sont à l'extrême limite du programme de Sup.