FORMES LINÉAIRES

Dans tout le chapitre, K désigne R ou C.

I. Formes linéaires et hyperplans

Déf 1:

Soit E un \mathbb{K} -espace vectoriel. On appelle <u>hyperplan</u> de E tout sous-espace vectoriel H de E qui admet une droite vectorielle pour supplémentaire.

(Rem : Si E est de dimension finie $n \in \mathbb{N}^*$, cela équivaut à : dim(H) = n - 1.)

Prop 1:

Si H est un hyperplan de E, alors, pour tout vecteur $a \notin H$, on a : $E = H \oplus \mathbb{K}a$.

Démonstration:

H est un hyperplan donc, par définition, il existe $b \in E \setminus \{0\}$ tel que $E = H \oplus \mathbb{K}b$. Soit $a \notin H$. Alors $H \cap \mathbb{K}a = \{0\}$ car $\lambda a \notin H$ sauf si $\lambda = 0$. Il reste à montrer $E = H + \mathbb{K}a$. Soit $x \in E$. Il existe $h \in H$ et $\lambda \in \mathbb{K}$ tels que $x = h + \lambda b$. Et il existe aussi $h' \in H$ et $\mu \in \mathbb{K}$ tels que $a = h' + \mu b$. μ ne peut pas être nul car $a \notin H$. On a donc $b = \frac{1}{\mu}(a - h')$ puis $x = h + \frac{\lambda}{\mu}(a - h') = \underbrace{h - \frac{\lambda}{\mu}h'}_{\in \mathbb{K}} + \underbrace{\frac{\lambda}{\mu}a}_{\in \mathbb{K}a} \in H + \mathbb{K}a$.

Rem: dans le cas où E est de dimension finie, on peut conclure directement en utilisant les deux propriétés: $H \cap \mathbb{K}a = \{0\}$ et $\dim E = \dim H + \dim(\mathbb{K}a)$.

Déf 2:

Soit E un \mathbb{K} -espace vectoriel. On appelle <u>forme linéaire</u> sur E une application linéaire de E dans le corps de base \mathbb{K} .

L'espace vectoriel $\mathcal{L}(E,\mathbb{K})$ des formes linéaires sur E s'appelle l'espace vectoriel <u>dual</u> de E, et est noté E^* .

Rem: Si E est de dimension finie, on a : $\dim E = \dim E^*$ (car $\dim \mathcal{L}(E, \mathbb{K}) = \dim E \times \dim \mathbb{K}$).

Exemples de référence

- **1.** Soit D un ensemble non vide et $x_0 \in D$. L'application $\varphi \colon f \mapsto f(x_0)$ est une forme linéaire sur le \mathbb{K} -espace vectoriel $\mathcal{A}(D,\mathbb{K})$ (appelée *évaluation en un point*).
- **2.** Soit [a;b] un intervalle de \mathbb{R} . L'application $\varphi: f \mapsto \int_a^b f$ est une forme linéaire sur le \mathbb{C} -espace vectoriel $\mathscr{C}([a;b],\mathbb{C})$ des fonctions continues sur [a;b] à valeurs dans \mathbb{C} .
- 3. Soit E un espace vectoriel de dimension finie n, rapporté à une base $\mathscr{B} = (e_1, \ldots, e_n)$. On peut alors considérer les n applications de E dans \mathbb{K} , e_i^* pour $i \in [\![1;n]\!]$, définies par :

$$\forall x = \sum_{i=1}^{n} x_i e_i \in E, \ e_i^*(x) = x_i.$$

Alors les e_i^* sont des formes linéaires sur E, appelées <u>formes linéaires coordonnées</u> dans la base \mathscr{B} . Il est alors facile de vérifier que la famille $\left\{e_i^*,\ 1\leqslant i\leqslant n\right\}$ est libre; puisque le cardinal de cette famille est $n=\dim E=\dim E^*$, cette famille forme une base de E^* , appelée <u>base duale</u> de \mathscr{B} .

En effet, si $(\lambda_i)_{1\leqslant i\leqslant n}$ est une famille de scalaires telle que $\sum\limits_{i=1}^n\lambda_ie_i^*=0_{E^\star}$ alors

$$\forall x \in E, \sum_{i=1}^{n} \lambda_i e_i^*(x) = 0$$

et en appliquant cette relation aux vecteurs e_j pour $j \in [1;n]$, puisque $e_i^*(e_j) = \delta_{i,j}$, on obtient $\lambda_j = 0$.

Théorème 1:

- **1.** Un sous-espace vectoriel H de E est un hyperplan si et seulement si il existe une forme linéaire $\varphi \in E^*$, non nulle, telle que : $H = \operatorname{Ker} \varphi$.
- **2.** Si φ et ψ sont deux formes linéaires non nulles sur E telles que $\ker \varphi = \ker \psi$, alors il existe $\lambda \in \mathbb{K}$ tel que $\psi = \lambda \varphi$.

Démonstration:

1. – Soit H un hyperplan de E; par définition, il existe $a \neq 0$ tel que $E = H \oplus \mathbb{K} a$. Il existe alors une forme linéaire φ sur E telle que $\begin{cases} \varphi(h) = 0 & \text{si } h \in H \\ \varphi(\lambda a) = \lambda & \text{pour tout } \lambda \in \mathbb{K} \end{cases}$ (en effet, une application linéaire est entièrement déterminée par ses restrictions à deux sous-espaces vectoriels supplémentaires).

Soit $x \in E$; il existe $h \in H$ et $\lambda \in \mathbb{K}$ tels que $x = h + \lambda a$.

On a alors : $\varphi(x) = 0 \Longleftrightarrow \varphi(h) + \lambda = 0 \Longleftrightarrow \lambda = 0 \Longleftrightarrow x \in H$, de sorte que l'on a bien Ker $\varphi = H$.

- Réciproquement, soit φ une forme linéaire non nulle, et $H=\operatorname{Ker} \varphi$. φ étant non nulle, il existe $b\in E$ tel que $\varphi(b)\neq 0$, puis en posant $a=\frac{1}{\varphi(b)}b$, on a $\varphi(a)=1$. Montrons alors que $E=H\oplus \mathbb{K} a$, ce qui prouvera que H est un hyperplan.
 - $-\text{ Si }x\in H\cap \mathbb{K}a\text{, }x\in H\text{ et il existe }\lambda\in \mathbb{K}\text{ tel que }x=\lambda a\text{. Donc }0=\varphi(x)=\lambda\varphi(a)=\lambda\text{, d'où }x=0:H\cap \mathbb{K}a=\left\{ 0\right\} .$
 - Si $x \in E$, on a $x = \underbrace{x \varphi(x)a}_{=h} + \underbrace{\varphi(x)a}_{\in \mathbb{K}a}$ avec $h \in H$ puisque $\varphi(x \varphi(x)a) = \varphi(x) \varphi(x)\varphi(a) = 0$.

Ainsi, $E = H + \mathbb{K}a$, ce qui achève cette démonstration.

2. Soient φ et ψ deux formes linéaires non nulles telles que $\operatorname{Ker} \psi = \operatorname{Ker} \varphi$. Notons $H = \operatorname{Ker} \varphi$. D'après ce qui précède, H est un hyperplan, donc il existe $a \in E \setminus \{0\}$ tel que $E = H \oplus \mathbb{K}a$. Posons $\lambda = \frac{\psi(a)}{\varphi(a)}$, ce qui est possible puisque $a \notin H$ donc $\varphi(a) \neq 0$. On a alors $\psi(x) = \lambda \varphi(x)$ pour tout $x \in H$ et tout $x \in \mathbb{K}a$, donc pour tout $x \in E$. Cela prouve que $\psi = \lambda \varphi$.

II. Équations d'un hyperplan

Déf 3:

Si H est un hyperplan de E et si $\varphi \in E^*$ (non nulle) est telle que $H = \operatorname{Ker} \varphi = \{x \in E \mid \varphi(x) = 0\}$, l'équation $\varphi(x) = 0$ s'appelle une équation de l'hyperplan H.

Dans toute la suite, E désigne un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

Soit $\mathscr{B} = (e_1, \ldots, e_n)$ une base de E.

On sait que toute forme linéaire φ sur E est entièrement caractérisée par la donnée des images des vecteurs d'une base, donc ici les scalaires $a_i = \varphi(e_i)$.

Si x est un vecteur de E de coordonnées (x_1, \ldots, x_n) dans la base \mathcal{B} , on a alors :

$$\varphi(x) = \varphi\left(\sum_{i=1}^n x_i e_i\right) = \sum_{i=1}^n x_i \varphi(e_i) = \sum_{i=1}^n a_i x_i.$$

Cette expression de $\varphi(x)$ en fonction des coordonnées de x s'appelle <u>l'expression analytique</u> de φ dans la base \mathscr{B} .

Remarques

- **1.** L'égalité $\varphi(x) = \sum_{i=1}^n a_i x_i$ peut aussi s'écrire $\varphi(x) = \sum_{i=1}^n a_i e_i^*(x)$, où (e_i^*) désigne la base duale de \mathscr{B} . Ainsi, $\varphi = \sum_{i=1}^n a_i e_i^*$, et les a_i sont les coordonnées de φ dans la base duale.
- 2. Réciproquement, il est facile de vérifier que toute application de ce type est bien une forme linéaire sur *E*, puisque, d'après le calcul ci-dessus, il s'agit d'une combinaison linéaire des e_i*.
 On a donc obtenu ainsi l'expression générale d'une forme linéaire sur un espace vectoriel de dimension finie dans une base donnée.

Conséquence:

Si H est un hyperplan de E, et si $H=\operatorname{Ker}\varphi$ où φ est une forme linéaire non nulle sur E, H est l'ensemble des vecteurs x de coordonnées (x_1,\ldots,x_n) tels que $\sum\limits_{i=1}^n a_ix_i=0$ (où les a_i sont des scalaires non tous nuls, ce sont les images des vecteurs de $\mathscr B$ par φ).

L'équation $\sum_{i=1}^{n} a_i x_i = 0$ s'appelle alors <u>une équation de H</u> dans la base \mathscr{B} .

Prop 2:

Soient H et H' deux hyperplans de E, d'équations respectives dans \mathscr{B} : $\sum_{i=1}^{n} a_i x_i = 0$ et $\sum_{i=1}^{n} b_i x_i = 0$.

Alors H' = H si et seulement si il existe un scalaire λ tel que pour tout $i \in [1; n]$ on ait $b_i = \lambda a_i$.

Démonstration:

C'est une conséquence directe du théorème 1 : en effet, si l'équation de H (resp. H') s'écrit $\varphi(x)=0$ (resp. $\psi(x)=0$), ce théorème dit que : $H=H'\Longleftrightarrow\exists\,\lambda\in\mathbb{K}$ tq $\psi=\lambda\varphi$, et la relation $\psi=\lambda\varphi$ équivaut à $\psi(e_i)=\lambda\varphi(e_i)$ pour tout i, c'est-à-dire à $b_i=\lambda a_i$.

Exemples

1. Dans \mathbb{R}^2 rapporté à sa base canonique (e_1, e_2) , l'ensemble des couples (x, y) qui vérifient une équation de la forme ax + by = 0 avec $(a, b) \neq (0, 0)$ est une droite : c'est le noyau de la forme linéaire non nulle φ telle que $\varphi(e_1) = a$ et $\varphi(e_2) = b$.

Un vecteur de base de cette droite est le vecteur (-b, a).

Si a'x + b'y = 0 est une autre équation de cette droite, alors il existe $\lambda \in \mathbb{R}$ tel que : $a' = \lambda a$ et $b' = \lambda b$.

2. Dans \mathbb{R}^3 rapporté à sa base canonique (e_1,e_2,e_3) , l'ensemble des triplets (x,y,z) qui vérifient une équation de la forme ax + by + cz = 0 avec $(a,b,c) \neq (0,0,0)$ est un plan (c'est le noyau de la forme linéaire φ telle que $\varphi(e_1) = a$, $\varphi(e_2) = b$, $\varphi(e_3) = c$).

Si a'x + b'y + c'z = 0 est une autre équation de ce plan, alors il existe $\lambda \in \mathbb{R}$ tel que : $a' = \lambda a$, $b' = \lambda b$ et $c' = \lambda c$.

Rem: Ces résultats concernant l'équation d'un hyperplan, et plus particulièrement d'un plan en dimension 3, sont importants à retenir, et il faut penser à les utiliser car ils simplifient grandement certaines démonstrations.

Exercice Dans \mathbb{R}^3 , écrire une équation du plan P engendré par les vecteurs u=(1,-1,1) et v=(1,2,3).

Notons d'abord que Vect(u, v) est bien un plan, les vecteurs u et v étant linéairement indépendants.

1. 1ère solution : Puisque l'on sait qu'une équation de P est de la forme ax + by + cz = 0, il suffit de déterminer a, b et c (à une constante multiplicative près) tels que u et v vérifient cette équation c'est-à-dire

$$\begin{cases} a-b+c=0\\ a+2b+3c=0 \end{cases}$$

2. 2ème solution : On peut écrire qu'un vecteur w=(x,y,z) appartient à P si et seulement si il existe des réels λ et μ tels que $w=\lambda u+\mu v$ ce qui se traduit par

$$\begin{cases} x = \lambda + \mu \\ y = -\lambda + 2\mu \\ z = \lambda + 3\mu \end{cases}$$
 (équation paramétrique de P)

Il « suffit » alors d'éliminer λ et μ entre ces trois équations pour trouver une relation entre x, y et z.

3. *3ème solution* : Il est plus rapide d'écrire qu'un vecteur w = (x, y, z) appartient à P si et seulement si $\det(u, v, w) = 0$ soit

$$\begin{vmatrix} 1 & 1 & x \\ -1 & 2 & y \\ 1 & 3 & z \end{vmatrix} = 0$$

ce qui donne après calcul du déterminant (développement selon la dernière colonne) directement une équation du plan : 5x + 2y - 3z = 0.

III. Équations d'un sous-espace vectoriel

Théorème 2:

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

Si $(\varphi_1, \ldots, \varphi_p)$ est une famille *libre* de p formes linéaires sur E $(p \in \mathbb{N}^*)$, le sous-espace vectoriel

$$F = \bigcap_{i=1}^{p} \operatorname{Ker} \varphi_{i} = \{ x \in E \mid \forall i \in [1; p], \varphi_{i}(x) = 0 \}$$

est un sous-espace vectoriel de E de dimension n - p.

L'ensemble des p équations $\varphi_i(x)=0$ $(1\leqslant i\leqslant p)$ s'appelle un système d'équations de F.

Démonstration:

E étant rapporté à une certaine base $\mathscr B$, chaque forme linéaire $\, \varphi_i \,$ a une expression analytique de la forme

$$\varphi_i(x) = \sum_{j=1}^n a_{i,j} x_j.$$

Un vecteur x de coordonnées (x_1,\ldots,x_n) appartient à F si et seulement si ses coordonnées sont solutions du système linéaire homogène AX=0 où A est la matrice $(a_{i,j})$, de type (p,n). Cette matrice étant de rang p puisque l'on a supposé les φ_i linéairement indépendantes, l'ensemble des solutions $\ker A$ est bien un sous-espace vectoriel de dimension $n-p=\dim E-\operatorname{rg} A$ d'après le théorème du rang.

Rem: La même démonstration montre que, si $(\varphi_1, \dots, \varphi_p)$ est une famille de p formes linéaires sur E , $de\ rang\ r$, alors $\dim F = n - r$.

Exercice Déterminer une base du sous-espace vectoriel F de \mathbb{R}^5 dont un système d'équations est :

$$\begin{cases} x_1 + 3x_2 - 2x_3 + 2x_4 + 3x_5 = 0 \\ x_1 + 4x_2 - 3x_3 + 4x_4 + 2x_5 = 0 \\ 2x_1 + 3x_2 - x_3 - 2x_4 + 9x_5 = 0 \end{cases}$$

Tout d'abord, F est bien un sous-espace vectoriel de \mathbb{R}^5 , comme intersection de 3 hyperplans.

Soit $x = (x_1, \dots, x_5) \in \mathbb{R}^5$. Alors

$$x \in F \iff \begin{cases} x_1 + 3x_2 - 2x_3 + 2x_4 + 3x_5 = 0 \\ x_1 + 4x_2 - 3x_3 + 4x_4 + 2x_5 = 0 \\ 2x_1 + 3x_2 - x_3 - 2x_4 + 9x_5 = 0 \end{cases}$$

$$\iff \begin{cases} x_1 + 3x_2 - 2x_3 + 2x_4 + 3x_5 = 0 \\ x_2 - x_3 + 2x_4 - x_5 = 0 \\ -3x_2 + 3x_3 - 6x_4 + 3x_5 = 0 \end{cases}$$

$$\iff \begin{cases} x_1 = -3x_2 + 2x_3 - 2x_4 - 3x_5 \\ x_2 = x_3 - 2x_4 + x_5 \end{cases} \iff \begin{cases} x_1 = -x_3 + 4x_4 - 6x_5 \\ x_2 = x_3 - 2x_4 + x_5 \end{cases}$$

F est donc l'intersection de 2 hyperplans distincts, c'est un sous-espace vectoriel de dimension 5-2=3. C'est aussi l'ensemble des vecteurs de la forme :

$$x = (-x_3 + 4x_4 - 6x_5, x_3 - 2x_4 + x_5, x_3, x_4, x_5)$$

donc il admet pour base la famille formée des 3 vecteurs :

$$(-1,1,1,0,0)$$
 , $(4,-2,0,1,0)$ et $(-6,1,0,0,1)$.

Le théorème précédent possède une sorte de réciproque.

Théorème 3:

Soient E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et F un sous-espace vectoriel de E de dimension $p \leq n-1$.

Il existe n-p formes linéaires indépendantes $\varphi_1,\ldots,\varphi_{n-p}$ telles que

$$F = \bigcap_{i=1}^{n-p} \operatorname{Ker} \varphi_i$$

c'est-à-dire telles que, pour tout $x \in E$:

$$x \in F \iff [\varphi_1(x) = 0, \ \varphi_2(x) = 0, \ \dots, \ \varphi_{n-p}(x) = 0]$$
 (S)

(S) est un système d'équations de F.

Démonstration:

Soit (e_1,\ldots,e_p) une base de F, que l'on complète en une base $\mathscr{B}=(e_1,\ldots,e_n)$ de E.

On peut alors considérer la base duale (e_1^*, \dots, e_n^*) de \mathcal{B} dans E^* . Pour tout vecteur $x = \sum_{i=1}^n x_i e_i$ on a

$$x \in F \Longleftrightarrow x_{p+1} = \cdots = x_n = 0 \Longleftrightarrow e_{p+1}^*(x) = \cdots = e_n^*(x) = 0$$

donc les n-p formes linéaires e_i^* pour $p+1 \le i \le n$ conviennent (elles sont bien indépendantes puisque extraites d'une base).

Exercice Dans \mathbb{R}^5 , écrire un système d'équations du plan P engendré par les vecteurs u=(1,-1,1,-1,0) et v=(0,1,-1,1,-1).

Un vecteur $x = (x_1, ..., x_5)$ appartient à P si et seulement si il existe des réels λ et μ tels que $x = \lambda u + \mu v$ ce qui se traduit par le système :

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} \quad \text{soit} : \begin{cases} x_1 = \lambda \\ x_2 = -\lambda + \mu \\ x_3 = \lambda - \mu \\ x_4 = -\lambda + \mu \\ x_5 = -\mu \end{cases}$$

(c'est une équation paramétrique du plan).

Le principe consiste alors à exprimer λ et μ à l'aide de 2 des équations ci-dessus puis à remplacer dans les autres. Par exemple, si l'on utilise la 1ère et la dernière équation, on obtient comme système d'équations du plan :

$$x_2 = -x_1 - x_5$$
, $x_3 = -x_2$, $x_4 = x_2$.

Rem : Les méthodes utilisées dans les exemples et exercices de ce chapitre doivent être absolument sues.

Il faut savoir:

- reconnaître un hyperplan, et plus généralement, reconnaître un sous-espace vectoriel donné par un système d'équations linéaires;
- trouver la dimension et une base d'un sous-espace vectoriel si l'on en connaît un système d'équations;
- trouver un système d'équations d'un sous-espace vectoriel si l'on en connaît une base.

