DS N°1 (le 08/09/2012)

EXERCICE 1 : (E3A PSI 2011) (*)

Soit $\mathbb{C}[X]$ l'ensemble des polynômes à coefficients complexes. Dans tout cet exercice, on identifie les éléments de $\mathbb{C}[X]$ et leurs fonctions polynomiales associées.

Soit $P \in \mathbb{C}[X]$ un polynôme non nul vérifiant la relation

(*)
$$P(X^2 - 1) = P(X - 1)P(X + 1)$$

- **1.** Montrer que si a est racine de P alors $(a+1)^2-1$ et $(a-1)^2-1$ sont aussi des racines de P.
- **2.** Soit $a_0 \in \mathbb{C}$. On définit la suite de nombres complexes $(a_n)_{n\geqslant 0}$ en posant, pour tout $n\geqslant 0$, $a_{n+1}=a_n^2+2a_n$.
 - a) Vérifier que lorsque a_0 est une racine de P, pour tout entier naturel n le nombre complexe a_n est une racine de P.
 - **b)** Montrer que lorsque a_0 est un réel > 0, la suite $(a_n)_{n \ge 0}$ est une suite strictement croissante de réels positifs.
 - c) En déduire que P n'admet pas de racine réelle strictement positive.
 - **d)** Montrer que -1 n'est pas racine de P.
 - e) Montrer que pour tout $n \in \mathbb{N}$, $a_n + 1 = (a_0 + 1)^{2^n}$.
- 3. Déduire des questions précédentes que si a est une racine complexe de P alors |a+1|=1. On admettra que l'on a aussi |a-1|=1.
- 4. Montrer que si le degré de P est > 0 alors P a pour unique racine 0.
- **5.** Déterminer tous les polynômes $P \in \mathbb{C}[X]$ qui vérifient la relation (*).

EXERCICE 2: (TPE 1985, épreuve pratique, 2h) ($\star\star\star$)

On considère le polynôme P tel que :

$$P(z) = z^3 + az^2 - \overline{a}z - 1,$$

où a est un nombre complexe.

- **1.** On pose $a = \alpha + i\beta$ ($(\alpha, \beta) \in \mathbb{R}^2$). Discuter, suivant la position dans le plan complexe du point A d'affixe a, le nombre de racines réelles de l'équation P(z) = 0, et donner leurs valeurs.
- 2. Prouver que l'équation P(z) = 0 a toujours au moins une racine de module 1.
- **3.** Prouver que, si $a \neq 0$, le module de toute racine de l'équation P(z) = 0 est strictement inférieur à 1 + |a|.
- 4. Pour la suite, on prend

$$a = \frac{1 + i\sqrt{7}}{2}.$$

- a) Calculer $a^2, a^3, a^4, \overline{a}, \overline{a}^2, \overline{a}^3, \overline{a}^4$, en les exprimant sous la forme p + qa, $(p,q) \in \mathbb{Z}$.
- **b)** Déterminer le quotient et le reste de la division euclidienne de $P(X^2)$ par P(X).

- c) En déduire que si λ complexe est racine de P, $\mu = \lambda^2$ et $\nu = \lambda^4$ le sont aussi. En déduire enfin les valeurs de λ, μ, ν .
- 5. Chercher tous les polynômes Q du troisième degré à coefficients complexes, unitaires, tels que $Q(X^2)$ soit divisible par Q(X).

<u>PROBLÈME</u>: Localisation des racines d'un polynôme. $(\star\star)$

Question préliminaire :

Démontrer que, si $z_1, z_2, ..., z_n$ sont n nombres complexes $(n \in \mathbb{N}^*)$, avec $z_n \neq 0$, l'égalité :

$$|z_1 + z_2 + \dots z_n| = |z_1| + |z_2| + \dots |z_n|$$

est possible si et seulement si il existe des réels positifs $\lambda_1, \lambda_2, \dots, \lambda_{n-1}$ tels que $z_i = \lambda_i z_n$ pour tout $i \in [1, n-1]$. (on pourra procéder par récurrence sur n).

<u>Problème</u>:

Partie A : Une première majoration des modules des racines d'un polynôme.

1. Exemple numérique

On considère les nombres complexes $a_0 = 6-2i$, $a_1 = -3-5i$, $a_2 = -2+3i$, et on définit le polynôme $P \in \mathbb{C}[X]$ par :

$$P = X^3 + a_2 X^2 + a_1 X + a_0.$$

- 1.1 Montrer que P possède une racine réelle.
- **1.2** Résoudre dans \mathbb{C} l'équation : $z^2 + 3iz 3 + i = 0$.
- **1.3** Vérifier que les racines de P appartiennent au disque fermé de centre O et de rayon $A = \max\{|a_0|, 1+|a_1|, 1+|a_2|\}.$

2. Étude du cas général

On considère un polynôme unitaire S de degré n $(n \in \mathbb{N}^*)$ défini par :

$$S = X^{n} + a_{n-1}X^{n-1} + \dots + a_1X + a_0$$

où les nombres complexes $(a_i)_{0 \le i \le n-1}$ sont non tous nuls.

À ce polynôme S, on associe le polynôme R à coefficients réels défini par :

$$R = X^{n} - |a_{n-1}|X^{n-1} - \dots - |a_{1}|X - |a_{0}|.$$

2.1 Démontrer qu'il existe un unique réel r strictement positif tel que : R(r) = 0 (on pourra étudier les variations de la fonction $x \mapsto \frac{R(x)}{x^n}$ pour $x \in \mathbb{R}_+^*$).

Préciser le signe de R(x) pour $x \ge 0$.

2.2 On pose

$$A = \max(|a_0|, 1 + |a_1|, \dots, 1 + |a_{n-1}|).$$

Établir : $R(A) \ge 0$, et en déduire : $r \le A$.

2.3 Établir la relation : $\forall z \in \mathbb{C}$, $|S(z)| \ge R(|z|)$.

En déduire que les racines de S sont toutes de module inférieur ou égal à r (et en particulier, elles appartiennent donc toutes au disque fermé de centre S et de rayon S).

2.4 Montrer que, si on suppose de plus $a_{n-1} \neq 0$, le polynôme S a au plus une racine complexe de module r.

Montrer que ce résultat peut tomber en défaut si on ne suppose pas $a_{n-1} \neq 0$.

Parie B: le théorème d'Eneström-Kakeya (1893 et 1913)

1. Soit $P \in \mathbb{R}[X]$, $P = \alpha_n X^n + \alpha_{n-1} X^{n-1} + \dots + \alpha_1 X + \alpha_0$, avec $0 < \alpha_0 \le \alpha_1 \le \dots \le \alpha_n$.

En appliquant les résultats précédents au polynôme $S = \frac{1}{\alpha_n}(X-1)P$, démontrer que, pour toute racine complexe z de P, on a : $|z| \le 1$.

Montrer que, si l'on suppose de plus $\alpha_{n-1} < \alpha_n$, alors toute racine complexe z de P est telle que |z| < 1.

2. Soit $Q \in \mathbb{R}[X]$, $Q = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0$, où les a_i sont des réels strictement positifs. On pose :

$$\beta = \min_{i \in \llbracket 1, n \rrbracket} \left\{ \frac{a_{i-1}}{a_i} \right\} \quad \text{et} \quad \gamma = \max_{i \in \llbracket 1, n \rrbracket} \left\{ \frac{a_{i-1}}{a_i} \right\}.$$

Démontrer que, pour toute racine complexe z de \mathbb{Q} , on a :

$$\beta \leq |z| \leq \gamma$$
.

(on pourra appliquer les résultats de la question précédente aux polynômes $Q(\gamma X)$ et $X^nQ\left(\frac{\beta}{X}\right)$).

Partie C: La borne de Cauchy et le théorème de Cohn (1922)

Soit $P \in \mathbb{C}[X]$, $P = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0$ un polynôme de degré $n \in \mathbb{N}^*$, où $a_n \neq 0$ et où les $(a_i)_{0 \leq i \leq n-1}$ sont non tous nuls.

1. Montrer que l'équation d'inconnue *x*

$$\sum_{k=0}^{n-1} |a_k| x^k = |a_n| x^n$$

possède une unique solution réelle strictement positive.

Cette racine est appelée borne de Cauchy de P, et sera notée $\rho(P)$ dans la suite.

2. Montrer que, pour toute racine complexe ζ de P, on a :

$$|\zeta| \leq \rho(P)$$
.

3. Soient $(\zeta_i)_{i \in [\![1,n]\!]}$ les n racines complexes (distinctes ou non) de P, avec :

$$0 \le |\zeta_1| \le |\zeta_2| \le \cdots \le |\zeta_n| \le \rho(P)$$
.

3.1 Montrer que pour tout entier $k \in [0, n]$ on a :

$$\left|\frac{a_k}{a_n}\right| \leqslant \binom{n}{k} |\zeta_n|^{n-k}$$

où $\binom{n}{k}$ désigne le coefficient binomial : $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

3.2 En déduire que :

$$\rho(\mathbf{P})^n \leqslant \sum_{k=0}^{n-1} \binom{n}{k} \rho(\mathbf{P})^k |\zeta_n|^{n-k}.$$

3.3 En déduire que :

$$\left(\sqrt[n]{2}-1\right)\rho(P) \leqslant |\zeta_n|.$$

(résultat dû à Cohn, 1922, amélioré par Berwald en 1934).

3.4 On suppose que 0 n'est pas racine de P et on pose $Q = \sum_{k=0}^{n} a_k X^{n-k}$. On note $\rho(Q)$ la borne de Cauchy de Q. Montrer que :

$$\frac{1}{\rho(Q)} \leqslant |\zeta_1| \leqslant \frac{1}{\left(\sqrt[q]{2}-1\right)\rho(Q)} \cdot$$

4. En reprenant le polynôme P de la question **1.** de la partie **A.**, déterminer à la calculatrice une valeur approchée de la borne de Cauchy de P, et vérifier pour ce polynôme les résultats obtenus aux questions **C.2.** et **C.3.3**.

Partie D: Un raffinement de la borne de Cauchy

On considère toujours $P \in \mathbb{C}[X]$, $P = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0$ un polynôme de degré $n \in \mathbb{N}^*$, où les $(a_i)_{0 \le i \le n-1}$ sont non tous nuls.

On pose

$$P_1 = a_n X^n + \sum_{k=0}^{n-2} a_k X^k$$
.

On se propose de montrer que les racines de P appartiennent à $\mathcal{D}_0 \cup \mathcal{D}_1$, où \mathcal{D}_0 et \mathcal{D}_1 sont les disques définis par :

$$\mathcal{D}_0 = \left\{ z \in \mathbb{C}, \ |z| \leqslant \rho(P_1) \right\} \quad \text{ et } \quad \mathcal{D}_1 = \left\{ z \in \mathbb{C}, \ \left| z + \frac{a_{n-1}}{a_n} \right| \leqslant \rho(P_1) \right\}.$$

- **1.** Montrer que $\rho(P_1) \leq \rho(P)$.
- **2.** Soit ζ une racine de P n'appartenant pas à \mathcal{D}_0 . Montrer que :

$$|a_{n-1} + a_n \zeta| \le \frac{1}{\rho(P_1)^{n-1}} \sum_{k=0}^{n-2} |a_k| \, \rho(P_1)^k = |a_n| \, \rho(P_1).$$

- 3. Conclure.
- 4. Illustrer le résultat obtenu à l'aide du polynôme de la question A.1.

Inspiré de : Capes Externe de Mathématiques, 2009.

