CORRIGÉ DM N°1 (d'après ENSI 1992, épreuve pratique)

PARTIE A : Nombre de racines réelles d'un polynôme

1. a) Si $\lambda > 0$, $V(\lambda_0 a_0, \lambda_1 a_1, \dots, \lambda_n a_n) = V(a_0, a_1, \dots, a_n)$. En effet, cela est vrai si tous les a_i sont nuls; sinon, soit (a'_0, \dots, a'_m) la suite obtenue à partir de (a_0, \dots, a_n) en retirant les termes nuls, et $(\epsilon_0, \dots, \epsilon_m)$ comme dans l'énoncé

Alors la suite obtenue à partir de $(\lambda_0 a_0, \lambda_1 a_1, \dots, \lambda_n a_n)$ en retirant les termes nuls est $(\lambda_0 a'_0, \dots, \lambda_m a'_m)$, et les ϵ_i associés sont inchangés puisque $\lambda > 0$. La somme $\frac{1}{2} \sum_{i=1}^m \left| \epsilon_i - \epsilon_{i-1} \right|$ est donc inchangée.

Si λ < 0, les ϵ_i sont changés en leur opposés, mais là encore, la somme est inchangée à cause des valeurs absolues.

b) Puisque $a_r \neq 0$, la suite (a'_0, \dots, a'_m) obtenue à partir de (a_0, \dots, a_n) en retirant les termes nuls contiendra encore a_r , que l'on notera par exemple a'_s .

On a alors $V(a_0, a_1, \ldots, a_r) = V(a'_0, \ldots, a'_s) = \frac{1}{2} \sum_{i=1}^s \left| \varepsilon_i - \varepsilon_{i-1} \right|$ et $V(a_r, a_{r+1}, \ldots, a_n) = V(a'_s, \ldots, a'_m) = \frac{1}{2} \sum_{i=s+1}^n \left| \varepsilon_i - \varepsilon_{i-1} \right|$, où les ε_i sont construits comme dans l'énoncé à partir de la suite (a'_0, \ldots, a'_m) .

 $\text{Or } \frac{1}{2}\sum_{i=1}^{s}\left|\epsilon_{i}-\epsilon_{i-1}\right|+\frac{1}{2}\sum_{i=s+1}^{m}\left|\epsilon_{i}-\epsilon_{i-1}\right|=\frac{1}{2}\sum_{i=1}^{m}\left|\epsilon_{i}-\epsilon_{i-1}\right|, \text{ ce qui donne l'égalité cherchée.}$

c) On peut ici supposer tous les a_i non nuls, puisque la suite obtenue en supprimant les termes nuls éventuels commencera encore par a_0 et finira encore par a_n , puisqu'on suppose ici $a_0a_n \neq 0$.

Soit alors $(\varepsilon_0,\ldots,\varepsilon_n)$ comme dans l'énoncé. Pour tout $i\in [\![1,n]\!], \frac{1}{2}\big|\varepsilon_i-\varepsilon_{i-1}\big|$ a la même parité que $\frac{1}{2}(\varepsilon_i-\varepsilon_{i-1})$, donc $V(a_0,\ldots,a_n)=\frac{1}{2}\sum_{i=1}^n\big|\varepsilon_i-\varepsilon_{i-1}\big|$ a même parité que $\frac{1}{2}\sum_{i=1}^n\varepsilon_i-\varepsilon_{i-1}$, somme qui est égale à $\frac{1}{2}(\varepsilon_n-\varepsilon_0)$. Si a_0 et a_n sont de mêmes signes, $\varepsilon_n=\varepsilon_0$ et $V(a_0,\ldots,a_n)$ est pair ; sinon, $\varepsilon_0=-\varepsilon_n$ et $V(a_0,\ldots,a_n)$ est impair

2. a) Soit P de degré $n \in \mathbb{N}^*$ et de valuation r. On peut le factoriser ainsi :

$$P = a_n X^r \prod_i (X - \alpha_i) \prod_j (X - \beta_j) \prod_k Q_k$$

où les α_i sont les (éventuelles) racines strictement positives de P, les β_j les (éventuelles) racines strictement négatives, et les Q_k des (éventuels) trinômes toujours positifs.

En comparant les termes de plus bas degrés dans les deux expressions, on obtient

 $a_r = a_n \prod_i (-\alpha_i) \prod_j (-\beta_j) \prod_k Q_k(0)$. Les $-\beta_j$ et les $Q_k(0)$ étant positifs, le signe de $a_r a_n$ est celui de $\prod_i (-\alpha_i)$, donc est positif s'il y a un nombre pair de α_i et négatif sinon, ce qui répond à la question.

Si r est la valuation de P, on a $a_0 = \ldots = a_{r-1} = 0$, donc $V(a_0, \ldots, a_n) = V(a_r, \ldots, a_n)$ qui est pair si $a_r a_n$ est positif et impair sinon, comme dans la question 1.c. Donc $V(a_0, \ldots, a_n)$ a la même parité que le nombre de racines strictement positives (éventuelles) de P.

b) Soit m le nombre de racines réelles strictement positives de P, comptées avec leur ordre de multiplicité; notons

 $x_1 < x_2 < \ldots < x_k$ ces racines, chaque racine x_i étant d'ordre de multiplicité $\lambda_i \in \mathbb{N}^*$. Ainsi, $\sum_{i=1}^k \lambda_i = m$

Chaque x_i est aussi une racine de P' d'ordre de multiplicité $\lambda_i - 1$ (en convenant de dire qu'une racine d'ordre de multiplicité 0 n'est pas une racine!). De plus, d'après le théorème de Rolle, P' compte au moins une racine

dans chaque intervalle $]x_i, x_{i+1}[$. Il y a donc au moins $(k-1) + \sum_{i=1}^{\kappa} (\lambda_i - 1) = k - 1 + (m-k) = m-1$ racines réelles strictement positives de P'. C'est l'inégalité demandée.

- c) Procédons par récurrence sur le degré de P.
 - Si $\deg P = 0$ alors $P = a_0$ et n'a pas de racine, donc l'inégalité $0 = \mathcal{R}(P, \mathbb{R}_+^*) \leq V(a_0) = 0$ est vérifiée!

- Supposons le résultat démontré pour tout polynôme de degré $\leq n-1$, et soit P de degré n. On a alors, en utilisant l'hypothèse de récurrence et la question précédente : $\mathscr{R}(P, \mathbb{R}_{+}^{*}) \leq \mathscr{R}(P', \mathbb{R}_{+}^{*}) + 1 \leq V(a_{1}, 2a_{2}, \dots, na_{n}) + 1 = V(a_{1}, \dots, a_{n}) + 1$ (d'après 1.a). Puisque, de façon évidente, $V(a_0, a_1, ..., a_n) \leq V(a_1, ..., a_n)$, on en déduit $\mathcal{R}(P, \mathbb{R}_+^*) \leq V(a_0, a_1, ..., a_n) + 1$. Cependant, on ne peut avoir l'égalité $\mathcal{R}(P, \mathbb{R}_+^*) = V(a_0, a_1, \dots, a_n) + 1$, puisque cela contredirait le résultat obtenu en 2.a concernant la parité. On a donc forcément $\mathcal{R}(P, \mathbb{R}_+^*) \leq V(a_0, a_1, \dots, a_n)$, ce qui établit le résultat à l'ordre n.
- **d)** Il suffit d'appliquer le résultat précédent à P(-X)!
- e) Lorsqu'on parcourt la suite (a_0, \ldots, a_n) , si l'un au moins des a_i , a_{i+1} est nul, on ne compte pas de changement de signe; il en sera donc de même entre $(-1)^i a_i$ et $(-1)^{i+1} a_{i+1}$. Sinon, s'il y a un changement de signe entre a_i et a_{i+1} , il n'y en a pas entre $(-1)^i a_i$ et $(-1)^{i+1} a_{i+1}$, et vice-versa. Donc $V(a_0, a_1, ..., a_n) + V(a_0, -a_1, ..., (-1)^n a_n)$ est au plus égal au nombre de couples (a_i, a_{i+1}) , c'est-à-dire
 - On suppose ici que P n'a que des racines réelles non nulles. On a donc :

$$n = \mathcal{R}(P, \mathbb{R}_{-}^{*}) + \mathcal{R}(P, \mathbb{R}_{+}^{*}) \underbrace{\leqslant}_{\text{d'après c) d}} V(a_0, a_1, \dots, a_n) + V(a_0, -a_1, \dots, (-1)^n a_n) \underbrace{\leqslant}_{\text{quest. préc}} n$$

donc toutes les inégalités précédentes sont en fait des égalités, i.e :

$$\mathscr{R}(P, \mathbb{R}_{+}^{*}) = V(a_0, a_1, \dots, a_n)$$
 et $\mathscr{R}(P, \mathbb{R}_{-}^{*}) = V(a_0, -a_1, \dots, (-1)^n a_n)$

PARTIE B : Suites de Sturm

- 1. Si on multiplie par des coefficients positifs, on ne change ni le signe, ni les racines...
- 2. La suite des restes dans les divisions euclidiennes est une suite de polynômes dont les degrés forment une suite d'entiers naturels strictement décroissante. La division ne peut donc se produire indéfiniment!
 - La suite des divisions euclidiennes peut s'écrire :

$$\begin{cases} P_0 = Q_1 P_1 - P_2 \\ P_1 = Q_2 P_2 - P_3 \\ \vdots \\ P_{m-2} = Q_{m-1} P_{m-1} - P_m \\ P_{m-1} = Q_m P_m \end{cases}$$

donc:

- P_m divise P_{m-1} (dernière ligne), donc il divise $Q_{m-1}P_{m-1}-P_m$ i.e P_{m-2} donc il divise $Q_{m-2}P_{m-2}-P_{m-1}$ i.e $P_{m-3}\,$ etc.... Ainsi, par récurrence (non rédigée), $P_m\,$ divise tous les $P_k\,.$
- Si un polynôme A divise P_0 et P_1 , alors il divise P_2 (première ligne), donc il divise $P_3 = Q_2P_2 P_1$ etc... Ainsi, par récurrence (non rédigée), A divise tous les P_k , et en particulier P_m .
- a) Notons d'abord que les f_k sont bien des polynômes, puisque P_m divise tous les P_k . Si a est une racine de f_0 , c'est une racine de P puisque $P = P_m f_0$. Si cette racine est d'ordre de multiplicité m dans P, alors c'est une racine d'ordre m-1 dans P', donc dans P_m (puisque $(X-a)^{m-1}$ divise P et P', il divise P_m) et c'est donc une racine simple de $f_0 = \frac{P}{P_m}$ Ainsi, f_0 a les mêmes racines que P, mais simples.
 - **b)** Si f_{k-1} et f_k avait une racine commune c, puisque $f_{k-1} = Q_k f_k f_{k+1}$ on aurait aussi c racine de f_{k+1} etc.. et ce serait aussi finalement une racine de f_m . Mais $f_m = 1$, c'est donc impossible.
 - c) Montrons que $(f_0, ..., f_m)$ est une suite de Sturm pour tout intervalle [a, b] tel que $P(a)P(b) \neq 0$.
 - La condition (α) est vérifiée par hypothèse.
 - La condition (β) est vérifiée, puisque $f_m = 1$.
 - Soit c une racine de f_0 . Alors c'est une racine de P; si cette racine est d'ordre de multiplicité m dans P, elle sera d'ordre m-1 dans P_m (voir ci-dessus). On peut donc écrire : $P_m = (X-c)^{m-1}Q$, $P = (X-c)^mQR$ d'où $f_0 = (X-c)R$, puis $f_0' = (X-c)R' + R$ et $f_1 = \frac{(X-c)^{m-1}(mQR + (X-c)(Q'R + QR'))}{(X-c)^{m-1}Q} = mR + (X-c)(...) = .$ Donc $f_1(c)f_0'(c) = mR(c)^2 > 0$. La condition (γ) est donc vérifiée.

$$f_0 = (X - c)R$$
, puis $f_0' = (X - c)R' + R$ et $f_1 = \frac{(X - c)^{m-1}(mQR + (X - c)(Q'R + QR'))}{(X - c)^{m-1}Q} = mR + (X - c)(...) = 0$

• Enfin, si c est racine de f_k pour $k \in [1, m-1]$, on a $f_{k-1}(c) = Q_k(c)f_k(c) - f_{k+1}(c) = -f_{k+1}(c)$ et ce terme ne peut être nul sinon c serait racine de f_k et f_{k-1} . Donc $-f_{k+1}(c)f_{k-1}(c) < 0$ et la condition (δ) est bien vérifiée.

- **4.** a) h ne peut varier que si l'un des f_j change de signe, i.e au voisinage d'une racine d'un des f_j (en effet, par continuité, si f_j ne s'annule pas en un point, il reste de signe constant au voisinage de ce point).
 - Soit c racine de f_j (avec j ∈ [1,m-1]). Les racines de tous les f_k étant en nombre fini, il n'y a aucun autre zéro que c dans un voisinage de c, donc h est constante sur un voisinage à droite et sur un voisinage à gauche de c, c exclu. De plus, en c, on a f_{j-1}(c)f_{j+1}(c) < 0; cela reste vrai, par continuité, dans un voisinage de c, et on peut écrire, sur ce voisinage:

$$h(x) = V(f_0(x), \dots, f_{j-1}(x)) + V(f_{j-1}(x), f_j(x), f_{j+1}(x)) + V(f_{j+1}(x), \dots, f_m(x))$$

Supposons dans un premier temps que c n'est racine d'aucun autre polynôme de la suite autre que f_j et f_0 . Alors, dans la somme ci dessus , les termes de gauche et de droite sont constants au voisinage de c puisque c n'est racine d'aucun polynôme qui figure dans la liste. Quant au terme $V(f_{j-1}(x), f_j(x), f_{j+1}(x))$, il ne change pas au voisinage de c (il reste égal à 1) car, dans un voisinage de c, par continuité, $f_{j-1}f_{j+1}$ reste strictement négatif.

Si c est racine d'un autre f_k avec $k \ge 1$, on refait le même raisonnement en faisant apparaître $V(f_{k-1}(x), f_k(x), f_{k+1}(x))$, et on obtient le même résultat.

- Finalement, h ne peut varier qu'au voisinage d'une racine c de f₀. Or f₁(c)f'₀(c) > 0 dont f₁f'₀ reste, par continuité, strictement positif dans un voisinage de c et on peut écrire h(x) = V(f₀(x), f₁(x))+V(f₁(x),...,f_m(x)). Le deuxième terme de la somme ne change pas au voisinage de c pour les mêmes raisons qu'auparavant. Si f₁(c) > 0, f₀ croit au voisinage de c donc est négative à gauche et positive à droite; donc h diminue de 1 quand on passe de x < c à x > c. Et on a le même résultat si f₁(c) < 0.
- **b)** Ainsi h diminue de 1 au voisinage de chaque racine de f_0 donc de P. Le nombre de racines (distinctes) de P sur [a,b] est donc égal à h(a)-h(b).
- c) Le nombre total des racines de tous les f_j étant fini, il existe un intervalle [a,b] contenant toutes ces racines. Le nombre de racines de P sur $\mathbb R$ est égal à celui sur [a,b], donc à h(a)-h(b). Mais, pour x < a ou x > b, les $f_j(x)$ ne changent pas de signe, ce signe étant le même que celui obtenu quand $x \to -\infty$ ou quand $x \to +\infty$, et ne dépendant que du coefficient dominant a_j de f_j et de son degré d_j . On posera donc $h(+\infty) = V(a_0, a_1, \ldots, a_m) = h(b)$ et $h(-\infty) = V((-1)^{d_0}a_0, (-1)^{d_1}a_1, \ldots, a_m) = h(a)$. Et le nombre de racines réelles distinctes de Psera alors égal à $h(-\infty) h(+\infty)$.
- **5.** On utilise la question B.1 pour multiplier les polynômes par des constantes positives et en enlever les dénominateurs, afin de simplifie les calculs.

On divise : $4(X^4 - 2X^3 - X^2 + 4X - 2) = (4X^3 - 6X^2 - 2X + 4)(X - \frac{1}{2}) - 5X^2 + 11X - 6$, soit $P_2 = 5X^2 - 11X + 6$ par exemple.

Puis : $25(4X^3 - 6X^2 - 2X + 4) = (5X^2 - 11X + 6)(20X + \frac{50}{3}) - 16X + 16$, et l'on prend : $P_3 = X - 1$, d'où $f_3 = 1, f_2 = 5X - 6, f_1 = 2X^2 - X - 2, f_0 = X^3 - X^2 - 2X + 2$.

• Pour P = $X^4 - 2X^3 - X^2 + 4X - 2$, et $f_0 = X^3 - X^2 - 2X + 2$, $f_1 = 2X^2 - X - 2$, $f_2 = 5X - 6$, on a : $h(+\infty) = V(1,2,5,1) = 0$ et $h(-\infty) = V(-1,2,-5,1) = 3$ et P possède 3 racines réelles exactement (donc la quatrième est forcément réelle, et est racine double). On a aussi : h(0) = V(2,-2,-6,1) = 2, donc P possède 1=3-2 racine négative et 2 racines positives distinctes. Comme la règle de Descartes avec la parité donne 1 ou 3 racines positives (éventuellement confondues), il doit y avoir exactement 3 racines dont une double sur $]0,+\infty[$ (c'est 1, en fait).

Après factorisation par $(X-1)^2$, on trouve les deux autres racines : $\pm \sqrt{2}$.

PARTIE C : Localisation des racines d'un polynôme

1. Soit ξ une racine de P.

On a donc $a_n \xi^n = -a_{n-1} \xi^{n-1} - \ldots - a_0$, d'où

$$|a_n| |\xi^n| \le |a_{n-1}| |\xi^{n-1}| + \dots + |a_0| \le m(P)(|\xi^{n-1}| + \dots + |\xi| + 1)$$

- Supposons d'abord $|\xi| > 1$. Alors $\left| a_n \right| |\xi^n| \le m(P) \left(\frac{|\xi^n| 1}{|\xi| 1} \right) \le m(P) \left(\frac{|\xi^n|}{|\xi| 1} \right)$ d'où $\left| a_n \right| \le m(P) \left(\frac{1}{|\xi| 1} \right)$ donc $|\xi| \le 1 + \frac{m(P)}{|a_n|}$.
- et, bien sûr, cette inégalité reste vraie si l'on suppose $|\xi| \le 1$!

- 2. Soit $\alpha > 0$, et $Q(X) = P(\alpha X)$. Alors ξ est racine de P si et seulement si $\frac{\xi}{\alpha}$ est racine de Q, et l'inégalité précédente appliquée à Q donne : $\left|\frac{\xi}{\alpha}\right| \le 1 + \frac{m(Q)}{\left|a_n\alpha^n\right|}$ d'où $|\xi| \le \alpha + \frac{m(Q)}{\left|a_n\right|\alpha^{n-1}}$. En prenant $\alpha = \max\left\{\sqrt[k]{\left|\frac{a_{n-k}}{a_n}\right|}, \ 1 \le k \le n\right\} = \max\left\{\sqrt[n-k]{\left|\frac{a_k}{a_n}\right|}, \ 0 \le k \le n-1\right\}$, on a $\frac{m(Q)}{\left|a_n\right|\alpha^{n-1}} \le \max\left(\frac{\left|a_k\right|\alpha^k}{\left|a_n\right|\alpha^{n-1}}\right) \le \max\left(\frac{\left|a_k\right|\alpha}{\left|a_n\right|\alpha^{n-k}}\right). \text{ Or } \alpha^{n-k} \geqslant \frac{\left|a_k\right|}{\left|a_n\right|} \text{ pour tout } k \in \llbracket 0, n-1 \rrbracket \text{ donc } \left(\frac{\left|a_k\right|\alpha}{\left|a_n\right|\alpha^{n-k}}\right) \le \alpha$ pour tout $k \in \llbracket 0, n-1 \rrbracket$ donc $\frac{m(Q)}{\left|a_n\right|\alpha^{n-1}} \le \alpha$ et $|\xi| \le 2\alpha$, ce qui est le résultat voulu.
- 3. Voir TD Info.

