CORRIGÉ : POLYNÔMES À COEFFICIENTS ± 1 . PAIRES DE RUDIN-SHAPIRO (X PC, 2006)

Première partie : propriétés de \mathscr{L}

- 1. Pour $\ell = 2$, la condition de corrélation s'écrit $a_0a_1 + b_0b_1 = 0$. Donc $\underline{a} = (1, 1)$ et $\underline{b} = (1, -1)$ forment une paire complémentaire et $2 \in \mathcal{L}$.
 - Pour $\ell = 3$, les conditions de corrélation C_1 et C_2 sont respectivement

$$(a_0 + a_2)a_1 + (b_0 + b_2)b_1 = 0$$
 et $a_0a_2 + b_0b_2 = 0$.

Si $b_0=b_2$, la deuxième égalité donne $a_0=-a_2$ ainsi $(a_0+a_2)a_1+(b_0+b_2)b_1=2b_0b_1\neq 0$. Si $b_0=-b_2$, la deuxième égalité donne $a_0=a_2$ ainsi $(a_0+a_2)a_1+(b_0+b_2)b_1=2a_0a_1\neq 0$.

 C_1 et C_2 ne peuvent être vérifiées donc $3 \notin \mathcal{L}$.

2.a) • On a $P_{\underline{a}}(x)P_{\underline{a}}(x^{-1}) \sim a_0 a_{\ell-1} x^{\ell-1}$ lorsque x tend vers $+\infty$ (car $a_0 a_{\ell-1} \neq 0$). Si \underline{a} et \underline{b} sont deux séquences de longueur différentes, la plus longue ayant une longueur $\ell > 1$, on obtient $\lim_{x \to +\infty} P_{\underline{a}}(x)P_{\underline{a}}(x^{-1}) + P_{\underline{b}}(x)P_{\underline{b}}(x^{-1}) = \pm \infty$.

La fonction $x \mapsto P_{\underline{a}}(x)P_{\underline{a}}(x^{-1}) + P_{\underline{b}}(x)P_{\underline{b}}(x^{-1})$ n'est donc pas bornée sur $]0, +\infty[$.

$$\begin{split} \mathbf{P}_{\underline{a}}(x)\mathbf{P}_{\underline{a}}(x^{-1}) &= \sum_{0 \leq i,j \leq \ell-1} a_i a_j x^{i-j} \\ &= \sum_{i=0}^{\ell-1} a_i^2 + \sum_{0 \leq j < i \leq \ell-1} a_i a_j x^{i-j} + \sum_{0 \leq i < j \leq \ell-1} a_i a_j x^{i-j} \\ &= \sum_{i=0}^{\ell-1} a_i^2 + \sum_{k=1}^{\ell-1} \left(\sum_{j=0}^{\ell-1-k} a_{j+k} a_j \right) x^k + \sum_{k=1}^{\ell-1} \left(\sum_{i=0}^{\ell-1-k} a_i a_{i+k} \right) x^{-k} \\ &= \sum_{i=0}^{\ell-1} a_i^2 + \sum_{k=1}^{\ell-1} \left(\sum_{i=0}^{\ell-1-k} a_i a_{i+k} \right) \left(x^k + x^{-k} \right) \end{split}$$

en ayant posé k = i - j dans la première somme et k = j - i dans la seconde.

Ainsi pour deux séquences \underline{a} et \underline{b} de même longueur ℓ , on obtient

$$P_{\underline{a}}(x)P_{\underline{a}}(x^{-1}) + P_{\underline{b}}(x)P_{\underline{b}}(x^{-1}) = \sum_{i=0}^{\ell-1} (a_i^2 + b_i^2) + \sum_{k=1}^{\ell-1} \left(\sum_{i=0}^{\ell-1-k} a_i a_{i+k} + b_i b_{i+k}\right) (x^k + x^{-k}) (*)$$

Si \underline{a} et \underline{b} forment une paire complémentaire alors, pour tout $x \neq 0$,

$$P_{\underline{a}}(x)P_{\underline{a}}(x^{-1}) + P_{\underline{b}}(x)P_{\underline{b}}(x^{-1}) = \sum_{i=0}^{\ell-1} (a_i^2 + b_i^2) = 2\ell.$$

Ainsi la fonction
$$x \mapsto P_{\underline{a}}(x)P_{\underline{a}}(x^{-1}) + P_{\underline{b}}(x)P_{\underline{b}}(x^{-1})$$
 est constante sur \mathbb{R}^* .

Inversement supposons la fonction constante sur $\mathbb{R}\setminus\{0\}$. D'après le début de cette question, \underline{a} et \underline{b} sont de même longueur ℓ (car la fonction est bornée) ; on peut donc reprendre le calcul précédent. En multipliant (*) par x^{l-1} , on obtient deux fonctions polynomiales égales pour tout $x \neq 0$. En identifiant les

coefficients de part et d'autre de l'égalité, on obtient $\sum_{i=0}^{\ell-1-k} a_i a_{i+k} + b_i b_{i+k} = 0$ pour tout $k \in [[1, n-1]]$, donc

la paire <u>a</u>, <u>b</u> est complémentaire.

2.b) — Si \underline{a} est de longueur ℓ , alors $P_{\underline{a}}(1) = \ell - 2k$ où k est le nombre de coefficients égaux à -1, donc $P_{\underline{a}}(1)$ a même

Il en résulte que si \underline{a} et \underline{b} sont de même longueur, alors $P_a(1)$ et $P_b(1)$ sont des entiers de même parité.

— Soient $\ell \in \mathcal{L}$ et \underline{a} , \underline{b} une paire complémentaire de longueur ℓ . D'après les calculs précédents, $P_a(1)^2 + P_b(1)^2 = 2\alpha^2 + 2\beta^2 = 2\ell$

d'où $\ell = \left(\frac{P_{\underline{a}}(1) + P_{\underline{b}}(1)}{2}\right)^2 + \left(\frac{P_{\underline{a}}(1) - P_{\underline{b}}(1)}{2}\right)^2 \text{ avec } \frac{P_{\underline{a}}(1) + P_{\underline{b}}(1)}{2} \text{ et } \frac{P_{\underline{a}}(1) - P_{\underline{b}}(1)}{2} \text{ entiers d'après le résultat}$

précédent, donc ℓ peut s'écrire comme la somme de deux carrés d'entiers.

— Autre solution : On note
$$I = \{i \text{ tq } a_i = b_i\}$$
, $J = \{i \text{ tq } a_i = -b_i\}$, $\alpha = \sum_{i \in I} a_i$ et $\beta = \sum_{i \in J} a_i$. On a $P_{\underline{a}}(1) = \alpha + \beta$ et $P_{\underline{b}}(1) = \alpha - \beta$ donc $P_{\underline{a}}(1)^2 + P_{\underline{b}}(1)^2 = 2\alpha^2 + 2\beta^2 = 2\ell$...

Rem: on retrouve $3 \notin \mathcal{L}$.

2.c) Si m=2k alors $m^2\equiv 0(4)$ et si m=2k+1 alors alors $m^2\equiv 1(4)$, ainsi pour tout $\ell\in\mathcal{L}$, on a $\ell\equiv 0+0(4)$ ou $\ell \equiv 0 + 1(4)$ ou $\ell \equiv 1 + 0(4)$ ou $\ell \equiv 1 + 1(4)$.

L'ensemble infini des entiers congrus à 3 modulo 4 ne contient donc aucun élément de $\mathscr L$.

Ainsi le complémentaire de \mathcal{L} dans \mathbb{N} est un ensemble infini.

3.a) Soient \underline{a} et \underline{b} deux séquences de même longueur et $U = \frac{1}{2}(P_{\underline{a}} + P_{\underline{b}})$ et $V = \frac{1}{2}(P_{\underline{a}} - P_{\underline{b}})$.

Un calcul rapide donne $U(x)U(x^{-1}) + V(x)V(x^{-1}) = \frac{1}{2} \left(P_{\underline{a}}(x)P_{\underline{a}}(x^{-1}) + P_{\underline{b}}(x)P_{\underline{b}}(x^{-1}) \right).$

Il résulte directement de 2.a) que

 \underline{a} et \underline{b} forment une paire complémentaire ssi la fonction $x \mapsto \mathrm{U}(x)\mathrm{U}(x^{-1}) + \mathrm{V}(x)\mathrm{V}(x^{-1})$ est constante sur \mathbb{R}^* (cette constante étant égale à ℓ).

$$\left\{ \begin{array}{l} \mathrm{U}(x) = 1 + x - x^2 + x^3 + x^5 \\ \mathrm{V}(x) = -x^4 - x^6 - x^7 + x^8 + x^9 = -x^4 (1 + x^2 + x^3 - x^4 - x^5) \end{array} \right.$$

Le calcul donne

$$U(x)U(x^{-1}) + V(x)V(x^{-1}) = (1 + x - x^{2} + x^{3} + x^{5})(1 + \frac{1}{x} - \frac{1}{x^{2}} + \frac{1}{x^{3}} + \frac{1}{x^{5}})$$

$$+ (1 + x^{2} + x^{3} - x^{4} - x^{5})(1 + \frac{1}{x^{2}} + \frac{1}{x^{3}} - \frac{1}{x^{4}} - \frac{1}{x^{5}})$$

$$= 10.$$

Donc \underline{a} et \underline{b} forment une paire complémentaire et $10 \in \mathcal{L}$.

4. Soit \underline{v} une séquence de longueur paire 2m > 0 et n le nombre de coordonnées de \underline{v} égales à -1.

On a $\sum_{i=0}^{2m-1} v_i = 2m-2n$, donc l'assertion (i) «4 divise la somme $\sum_{i=0}^{2m_1} v_i$ » équivaut à m-n pair, c'est-à-dire l'assertion (ii) «n a la même parité que m».

On a $\prod_{i=0}^{m-1} v_i = (-1)^n$ donc l'assertion (ii) équivaut à l'assertion (iii) « $\prod_{i=0}^{2m_1} v_i = (-1)^m$ ».

5.a) Soit j un entier tel que $1 \le j \le \ell - 1$.

La somme des coordonnées de la séquence $(a_0a_j,\ldots,a_{\ell-1-j}a_{\ell-1},b_0b_j,\ldots,b_{\ell-1-j}b_{\ell-1})$ de longueur paire $2(\ell-j)$ est nulle d'après la *j*-ième condition de corrélation.

Elle est donc divisible par 4 et il résulte de l'assertion (iii) de 4. que

$$\prod_{k=0}^{\ell-1-j} x_k x_{k+j} = (-1)^{\ell-j}$$

- **5.b)** D'après la relation précédente :
 - pour $j = \ell 1 : x_0 x_{\ell-1} = -1$;
 - pour $j = \ell 2$ (si $\ell \ge 3$) : $x_0 x_{\ell-2} x_1 x_{\ell-1} = (-1)^2$, d'où, d'après la relation précédente $x_1 x_{\ell-2} = -1$. pour $j = \ell 3$ (si $\ell \ge 4$) : $x_0 x_{\ell-3} x_1 x_{\ell-2} x_2 x_{\ell-1} = (-1)^3 = -1$, d'où $x_2 x_{\ell-3} = -1$

et finalement : $\forall j \in [0, \ell - 1], \quad x_j x_{\ell-1-j} = -1.$

— Pour j = 1, la même relation donne $x_0 x_1^2 \dots x_{\ell-2}^2 x_{\ell-1} = (-1)^{\ell-1}$, donc, sachant que $x_i^2 = 1$ et que $x_0 x_{\ell-1} = -1$, on a $(-1)^{\ell-1} = -1$ donc ℓ est pair.

Deuxième partie : paires de Rudin-Shapiro

- **6.a)** Le calcul donne $P_1(X) = 1 + X$ et $Q_1(X) = 1 X$ puis $P_2(X) = 1 + X + X^2 X^3$ et $Q_2(X) = 1 + X X^2 + X^3$.
- **6.b)** Les premiers calculs donnent $P_0(1) = Q_0(1) = P_0(-1) = Q_0(-1) = 1$,

 $P_1(1) = Q_1(-1) = 2$ et $Q_1(1) = P_1(-1) = 0$,

 $P_2(1) = Q_2(1) = P_2(-1) = -Q_2(-1) = 2$,

 $P_3(1) = Q_3(-1) = 4$ et $Q_3(1) = P_3(-1) = 0$,

 $P_4(1) = Q_4(1) = P_4(-1) = -Q_4(-1) = 4.$

Montrons par récurrence sur $k \ge 1$ que :

$$\boxed{P_{2k}(1) = Q_{2k}(1) = P_{2k}(-1) = -Q_{2k}(-1) = 2^k, \ P_{2k-1}(1) = Q_{2k-1}(-1) = 2^k \ \text{et } P_{2k-1}(-1) = Q_{2k-1}(1) = 0.}$$

- Le résultat est vrai pour k = 1 et k = 2.

le résultat est donc vrai à l'ordre k + 1.

- 7. On commence par démontrer par récurrence sur $n \in \mathbb{N}$ que les degrés de P_n et Q_n sont égaux à $2^n 1$.
 - Cela permet de montrer ensuite par récurrence que les coefficients de P_n et Q_n sont égaux à ± 1 (en effet, il n'y aura pas de terme commun dans P_n et $X^{2^n}Q_n$ par exemple).
 - Montrons alors par récurrence sur $n \in \mathbb{N}$ que P_n et Q_n forment une paire complémentaire de polynômes.
 - Par convention, c'est vrai pour n = 0 car $P_0 = 1$ et $Q_0 = 1$.
 - On suppose le résultat vrai jusqu'à l'ordre n.

$$P_{n+1}(x)P_{n+1}(x^{-1}) = (P_n(x) + x^{2^n}Q_n(x))(P_n(x^{-1}) + x^{-2^n}Q_n(x^{-1}))$$

= $P_n(x)P_n(x^{-1}) + Q_n(x)Q_n(x^{-1}) + x^{2^n}Q_n(x)P_n(x^{-1}) + x^{-2^n}P_n(x)Q_n(x^{-1}).$

et

$$Q_{n+1}(x)Q_{n+1}(x^{-1}) = (P_n(x) - x^{2^n}Q_n(x))(P_n(x^{-1}) - x^{-2^n}Q_n(x^{-1}))$$

= $P_n(x)P_n(x^{-1}) + Q_n(x)Q_n(x^{-1}) - x^{2^n}Q_n(x)P_n(x^{-1}) - x^{-2^n}P_n(x)Q_n(x^{-1})$

ainsi

$$P_{n+1}(x)P_{n+1}(x^{-1}) + Q_{n+1}(x)Q_{n+1}(x^{-1}) = 2P_n(x)P_n(x^{-1}) + 2Q_n(x)Q_n(x^{-1})$$

est constant. Le résultat est donc vrai à l'ordre n+1, d'après I.2.a.

- Enfin, P_k et Q_k sont associés à des séquences de longueur 2^k . On a donc $2^k \in \mathcal{L}$ pour tout $k \in \mathbb{N}$.
- **8.** Montrons par récurrence sur $n \ge 0$ que pour tout $z \in \mathbb{C}^*$, on a $Q_n(z) = (-1)^n z^{2^n 1} P_n(-z^{-1})$.
 - Pour n = 0 le résultat est trivial car $P_0 = Q_0 = 1$

Pour n = 1, on a $-zP_1(-z^{-1}) = -z + 1 = Q_1(z)$.

— On suppose l'égalité établie jusqu'à l'ordre $n \ge 1$.

On a
$$P_{n+1}(-z^{-1}) = P_n(-z^{-1}) + z^{-2^n}Q_n(-z^{-1})$$
 avec $Q_n(-z^{-1}) = (-1)^{n+1}z^{-2^n+1}P_n(z)$ ainsi $P_{n+1}(-z^{-1}) = P_n(-z^{-1}) + (-1)^{n+1}z^{-2^{n+1}+1}P_n(z)$ et $(-1)^{n+1}z^{2^{n+1}-1}P_{n+1}(-z^{-1}) = (-1)^{n+1}z^{2^{n+1}-1}P_n(-z^{-1}) + P_n(z)$.

Par ailleurs $Q_{n+1}(z) = P_n(z) - z^{2^n}Q_n(z) = P_n(z) + (-1)^{n+1}z^{2^{n+1}-1}P_n(-z^{-1})$.

D'où l'égalité à l'ordre n+1.

9.a) Soit $T(X) = t_0 + t_1 X + \ldots + t_d X^d \in \mathbb{C}[X]$ de degré $d \ge 1$. Montrons que toute racine $z \in \mathbb{C}$ de T vérifie $|z| \le 1 + M$ où $M = \sup_{i \le 1} |t_i/t_d|$.

Par l'absurde, supposons qu'il existe une racine z de T telle que |z| > M+1, soit $\frac{M}{|z|-1} < 1$.

On a $z^d = -\frac{t_0}{t_d} - \frac{t_1}{t_d} z \dots - \frac{t_{d-1}}{t_d} z^{d-1}$ donc $|z|^d \le M(1 + |z| + \dots + |z|^{d-1})$. Puisque $|z| \ne 1$ on en déduit $|z|^d \le \frac{M}{|z| - 1} (|z|^d - 1) < |z|^d - 1$, d'où la contradiction.

9.b) — Soit z une racine (complexe) du polynôme P_nQ_n pour $n\geqslant 1$. Alors z est racine de P_n ou de Q_n et $z\neq 0$. Comme les coefficients de P_n ou Q_n valent ± 1 , on obtient, d'après 9.a) $|z|\leqslant 2$.

D'après **8.**, on a $Q_n(z) = (-1)^n z^{2^n-1} P_n(-z^{-1})$ donc $P_n(z) = (-1)^{n+1} z^{2^n-1} Q_n(-z^{-1})$ ainsi $-z^{-1}$ est racine de P_n ou de Q_n donc, pour la même raison, $|z^{-1}| \le 2$. Finalement

$$\boxed{\frac{1}{2} \leqslant |z| \leqslant 2.}$$

- Si on regarde la démonstration de **9.a**), il est facile de voir que l'inégalité obtenue est stricte! (c'est presque la même démonstration, il faut juste traiter à part le cas M = 0). Donc les deux inégalités sont strictes.
- **10.a)** P_n est la partie de P_{n+1} tronquée au degré $2^n 1$, il existe donc une série entière, $S(z) = \sum_{p=0}^{\infty} u_p z^p$, dont les P_n sont des sommes partielles.

Comme $|u_p z^p| = |z^p|$ pour tout p, le rayon de convergence est égal à 1.

10.b) Supposons que la somme de la série S ait un zéro z_0 tel que $|z_0| < \frac{1}{2}$.

On a alors $u_0=-\sum_{p=1}^\infty u_p z_0^p$, d'où $\left|u_0\right|\leqslant \sum_{p=1}^\infty \left|z_0^p\right|=\frac{\left|z_0\right|}{1-\left|z_0\right|}<1$ d'où contradiction.

