CORRIGÉ MINES PSI 2016

A. Exemples

1. Le polynôme caractéristique de D est $\chi_D = X^2 + 1$.

Il n'a aucune racine réelle et le spectre dans \mathbb{R} de D est vide. A fortiori D n'a aucune valeur propre réelle non nulle et D est quasi-nilpotente dans $\mathcal{M}_2(\mathbb{R})$.

Le spectre dans \mathbb{C} de D est $\{i, -i\}$ et contient au moins un élément non nul donc D n'est pas quasinilpotente dans $\mathcal{M}_2(\mathbb{C})$.

- 2. Le polynôme caractéristique de B est $\chi_B = X^2 \text{Tr}(B)X + \det(B) = X^2$. Ainsi, le spectre de B est $\{0\}$ et ne contient aucun élément non nul. B est quasi-nilpotente dans $\text{mat}_2(\mathbb{C})$.
- 3. Questions de cours...
 - $S_n(\mathbb{K})$ est le noyau de l'application linéaire $M \mapsto M {}^t M$ et est donc un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$.
 - $A_n(\mathbb{K})$ est le noyau de l'application linéaire $M \mapsto M + {}^t M$ et est donc un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$.
 - $T_n^{++}(\mathbb{K})$ est non vide (il contient O_n) et est stable par combinaisons linéaires (vérification immédiate). C'est donc un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$.
 - Montrons que

$$S_n(\mathbb{K}) = \text{Vect} \left(\{ E_{i,j} + E_{j,i} \}_{1 \le i < j \le n} \} \cup \{ (E_{i,i})_{1 \le i \le n} \} \right).$$

En effet:

- les matrices $E_{i,j} + E_{j,i}$ et $E_{i,i}$ sont bien dans $S_n(\mathbb{K})$.
- si $S \in S_n(\mathbb{K})$, on a :

$$S = \sum_{1 \leq i < j \leq n} s_{i,j} (E_{i,j} + E_{j,i}) + \sum_{i=1}^{n} s_{i,i} E_{i,i} \in \text{Vect} \left(\{ E_{i,j} + E_{j,i} \}_{1 \leq i < j \leq n} \} \cup \{ (E_{i,i})_{1 \leq i \leq n} \} \right).$$

On remarque ensuite que la famille $(E_{i,j} + E_{j,i})_{1 \leq i < j \leq n} \cup (E_{i,i})_{1 \leq i \leq n})$ est libre (on considère une combinaison linéaire nulle et on a immédiatement la nullité des coefficients en reprenant le calcul ci-dessus). Il reste alors à compter le nombre des éléments de cette famille qui est une base de $S_n(\mathbb{K})$:

$$\dim(S_n(\mathbb{K})) = \sum_{i=1}^n (n-i) + n = \frac{n(n-1)}{2} + n = \frac{n(n+1)}{2}.$$

4. Les valeurs propres d'une matrice triangulaire sont ses coefficients diagonaux et donc :

$$\forall T \in T_n^{++}(\mathbb{K}), \ \operatorname{Sp}(T) = \{0\}.$$

Ceci montre que $T_n^{++}(\mathbb{K})$ est quasi-nilpotent. Comme dans la question précédente, on montre que

$$T_n^{++}(\mathbb{K}) = \text{Vect}\left(\left\{E_{i,j}, 1 \leqslant i < j \leqslant n\right\}\right).$$

La famille étant libre (comme sous-famile de la base canonique), c'est une base de $T_n^{++}(\mathbb{K})$ et :

$$\dim(T_n^{++}(\mathbb{K})) = \sum_{i=1}^n (n-i) = \frac{n(n-1)}{2}.$$

5. Notons que si $X, Y \in \mathcal{M}_{n,1}(\mathbb{R})$, tXY peut s'interpréter comme le produit scalaire $\langle X | Y \rangle$ de X et Y vus comme éléments de \mathbb{R}^n muni de sa structure euclidienne canonique.

Soit $A \in A_n(\mathbb{R})$ et soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$. On a :

$${}^{t}XAX = \langle X | AX \rangle = \langle AX | X \rangle = {}^{t}(AX)X = {}^{t}X{}^{t}AX = -{}^{t}XAX$$
.

(Pour obtenir cette relation, on pouvait aussi remarquer, sans faire appel au produit scalaire, que tXAX est un réel, donc égal à sa transposée.)

On en déduit donc que ${}^tXAX=0$. En particulier, si λ est une valeur propre de A et X un vecteur propre associé alors :

$$0 = {}^t X A X = \lambda ||X||^2$$

et comme $X \neq 0$ (vecteur propre), $\lambda = 0$. 0 est donc la seule valeur propre réelle possible pour A. On a montré que $A_n(\mathbb{R})$ est quasi-nilpotent.

6. Comme $n \geqslant 2$, on peut considérer la matrice M définie par blocs par $M = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} \in A_n(\mathbb{R})$. On a

$$\chi_M = X^{n-2} \chi_D = X^{n-2} (X^2 + 1),$$

et le spectre dans \mathbb{C} de M est soit égal à $\{i, -i\}$ (cas n = 2) soit égal à $\{0, i, -i\}$ (cas $n \ge 3$). Si, par l'absurde, il existait une matrice P comme dans l'énoncé, M serait semblable dans $\mathcal{M}_n(\mathbb{R})$ à un élément de $T_n^{++}(\mathbb{R})$ et donc à une matrice dont 0 est la seule valeur propre complexe.

Le spectre étant un invariant de similitude, on obtient une contradiction.

Il n'existe donc pas de P comme dans l'énoncé.

B. Cas réel

7. Soit $S \in S_n(\mathbb{R})$. S est alors diagonalisable (théorème spectral). Si 0 est sa seule valeur propre réelle possible, S est alors semblable à une matrice diagonale nulle et est donc nulle.

Réciproquement, O_n est symétrique et quasi-nilpotente. La matrice nulle est ainsi la seule matrice symétrique quasi-nilpotente.

La question 2 montre que le résultat est faux dans le cas complexe (on a trouvé une matrice symétrique complexe quasi-nilpotente qui n'est pas nulle).

8. Soit V un sous-espace vectoriel de $M_n(\mathbb{R})$, quasi-nilpotent dans $M_n(\mathbb{R})$. D'après la question précédente $V \cap S_n(\mathbb{R}) = \{O_n\}$ et donc V et $S_n(\mathbb{R})$ sont en somme directe. Ainsi

$$\dim(V) \leqslant \dim(\mathcal{M}_n(\mathbb{R})) - \dim(S_n(\mathbb{R})) = \frac{n(n-1)}{2}.$$

C. Lemme des colonnes

- 9. La seule matrice quasi-nilpotente de $\mathcal{M}_1(\mathbb{K})$ est la matrice nulle (puisqu'une matrice de taille 1 a une unique valeur propre égale à son unique coefficient). Le lemme des colonnes est donc vrai dans le cas n=1.
- 10. Un calcul de déterminant par blocs montre que si $M \in V'$ alors :

$$\chi_M = X \chi_{K(M)}.$$

Les valeurs propres non nulles de $M \in V'$ et celles de K(M) sont donc les mêmes. Si V' est quasi-nilpotent alors K(V') l'est aussi.

11. D'après l'hypothèse de récurrence appliqué à K(V') (sous-espace quasi-nilpotent de $\mathcal{M}_{n-1}(\mathbb{K})$), il existe un élément $j \in [\![1\,;n-1]\!]$ tel que $C_j(K(V')) = \{0\}$. D'après l'hypothèse par l'absurde, pour tout $k \in [\![1\,;n]\!]$, $C_k(V) \neq \{0\}$. En appliquant cela avec k=j, il existe une matrice M non nulle dans $C_j(V)$. Comme j < n, $M \in V'$ et donc $K(M) \in K(V')$. Comme $M \in C_j(V)$, on a aussi K(M) qui a toutes ses colonnes nulles sauf peut-être la j-ème.

Finalement, $K(M) \in C_i(K(V'))$ et donc K(M) = 0 (voir ci-dessus).

M a ainsi une unique colonne qui peut être non nulle (celle de numéro j) et seul le dernier coefficient $m_{n,j}$ de cette colonne peut être non nul.

Comme $M \neq 0$, $m_{n,j} \neq 0$ et $M = m_{n,j} E_{n,j}$. Puisque V' est un sous-espace vectoriel, $E_{n,j} = \frac{1}{m_{n,j}} M \in V' \subset V$.

12. u_{σ} transforme la base (e_1, \ldots, e_n) en $(e_{\sigma(1)}, \ldots, e_{\sigma(n)})$ qui est aussi une base. Cette application linéaire est donc un isomorphisme de \mathbb{K}' .

 $(u_{\sigma})^{-1}$ envoie $e_{\sigma(i)}$ sur e_i pour tout i et donc e_k sur $e_{\sigma^{-1}(k)}$ pour tout k. On a donc

$$(u_{\sigma})^{-1} = u_{\sigma^{-1}}$$
.

On pouvait aussi vérifier $u_{\sigma^{-1}} \circ u_{\sigma}(e_j) = e_j$ pour tout j, ce qui prouve $u_{\sigma^{-1}} \circ u_{\sigma} = \operatorname{Id}_E$ et permet de répondre aux deux questions en même temps.

13. La colonne j de la matrice de u_{σ} dans la base canonique est la colonne $e_{\sigma(j)}$. Elle a tous ses coefficients nuls sauf celui en ligne $\sigma(j)$. Son coefficient générique est donc $\delta_{i,\sigma(j)}$. On a donc :

$$\operatorname{Mat}_{(e_1,\ldots,e_n)}(u_{\sigma}) = P_{\sigma}$$

On en déduit que P_{σ} est inversible et que

$$(P_{\sigma})^{-1} = \operatorname{Mat}_{(e_1, \dots, e_n)}(u_{\sigma}^{-1}) = P_{\sigma^{-1}} = (\delta_{i, \sigma^{-1}(j)})_{1 \leqslant i, j \leqslant n} = (\delta_{\sigma(i), j})_{1 \leqslant i, j \leqslant n}.$$

Lorsque l'on munit \mathbb{R}^n de sa structure euclidienne canonique, P_{σ} est la matrice de passage d'une base orthonormale à une base orthonormale donc c'est une matrice orthogonale, ce qui montre directement $(P_{\sigma})^{-1} = {}^tP_{\sigma}$.

14. Soit g l'endomorphisme de \mathbb{K}^n canoniquement associé à M. P_{σ} étant la matrice de changement de base de la base (e_i) à la base $(e_{\sigma(i)})$, d'après la formule de changement de base du cours :

$$P_{\sigma}^{-1}MP_{\sigma} = \operatorname{Mat}_{(e_{\sigma(i)})}(g)$$
.

Le coefficient de cette matrice situé ligne i et colonne j est par définition la coordonnée sur $e_{\sigma(i)}$ de $g(e_{\sigma(j)})$. Or :

$$g(e_{\sigma(j)}) = \sum_{k=1}^{n} m_{k,\sigma(j)} e_k = \sum_{\ell=1}^{n} m_{\sigma(\ell),\sigma(j)} e_{\sigma(\ell)},$$

en ayant fait le changement d'indice $k = \sigma(\ell)$ (σ bijection de [1; n] sur lui-même). Finalement,

$$P_{\sigma}^{-1}MP_{\sigma} = (m_{\sigma(i),\sigma(j)})_{1 \leqslant i,j \leqslant n}.$$

Rem: l'utilisation des formules de changement de base, d'ailleurs indiquée par l'énoncé, semble ici la plus naturelle. Néanmoins, on pouvait faire un calcul « bourrin » :

$$\forall (i,j) \in [1;n]^2, \quad (P_{\sigma}^{-1}MP_{\sigma})_{ij} = \sum_{\ell=1}^n \sum_{k=1}^n (P_{\sigma}^{-1})_{i\ell} m_{\ell k} (P_{\sigma})_{kj} = \sum_{\ell=1}^n \sum_{k=1}^n \delta_{i,\sigma^{-1}(\ell)} m_{\ell k} \delta_{k,\sigma(j)} = m_{\sigma(i)\sigma(j)}.$$

15. V^{σ} est l'image de V par l'application linéaire $M\mapsto P_{\sigma}^{-1}MP$ et c'est donc un espace vectoriel.

Le spectre étant un invariant de similitude, le caractère quasi-nilpotent des éléments de V entraı̂ne celui de ceux des éléments de V^{σ} et V^{σ} est un sous-espace quasi-nilpotent de $M_n(\mathbb{K})$.

Enfin, soit $j \in [1; n]$. D'après l'hypothèse par l'absurde, on peut trouver M non nulle dans $C_j(V)$, c'està-dire dont toutes les colonnes sont nulles sauf peut-être la j-ième.

D'après le calcul précédent, pour une permutation σ de [1;n], la matrice $P_{\sigma}^{-1}MP_{\sigma}$ a toutes ses colonnes nulles sauf peut-être la $\sigma^{-1}(j)$ -ième. Cette matrice, comme M, est non nulle, et appartient à $C_{\sigma^{-1}(j)}(V^{\sigma})$. Puisque σ est bijective, lorsque j décrit [1;n] il en est de même de $k = \sigma^{-1}(j)$ don on a montré que :

$$\forall k \in [1; n], \ C_k(V^{\sigma}) \neq \{0\}.$$

16. V^{σ} et V ont les mêmes propriétés (sous-espaces quasi-nilpotents tels que pour tout k, $C_k(V^{\sigma}) \neq \{0\}$). Pour tout σ , on peut donc appliquer la question 11 à V^{σ} et dire qu'il existe $k \in [1; n-1]$ tel que $E_{n,k} \in V_{\sigma}$ ou encore que $P_{\sigma}E_{n,k}P_{\sigma}^{-1} \in V$.

D'après la question 14, pour tout choix de σ on a $P_{\sigma}^{-1}E_{u,v}P_{\sigma}=E_{\sigma^{-1}(u),\sigma^{-1}(v)}$ (en effet en notant $N=P_{\sigma}^{-1}E_{u,v}P_{\sigma}$, on a $N_{i,j}$ qui est égal au coefficient $(\sigma(i),\sigma(j))$ de $E_{u,v}$ et est nul sauf si $\sigma(i)=u$ et $\sigma(j)=v$).

En appliquant ceci avec σ^{-1} , on a donc $P_{\sigma}E_{n,k}P_{\sigma}^{-1}=E_{\sigma(n),\sigma(k)}$.

Soit $j \in [\![1\,;n]\!]$. Appliquons ce qui précède avec σ la bijection qui se contente de permuter j et n en laissant les autres éléments invariants (c'est l'identité si j=n). On trouve alors $k \in [\![1\,;n-1]\!]$ tel que $E_{\sigma(n),\sigma(k)}=E_{j,\sigma(k)}\in V$. On a bien sûr $\sigma(k)\neq j$ car $k\neq n$ et σ est une bijection qui envoie déjà n sur j. On a donc prouvé que

$$\forall j \in [1; n], \exists f(j) \neq j / E_{i, f(j)} \in V$$

17. Posons $i_1 = 1$ et, pour tout $k \ge 2$, $i_k = f(i_{k-1})$. L'ensemble $\{i_k \mid k \in \mathbb{N}^*\}$ est inclus dans $[\![1\,;n]\!]$ et donc fini. Or, \mathbb{N}^* est infini. Il existe donc deux i_k égaux pour des valeurs de k différentes : $i_a = i_b$ avec a < b. En partant de i_a et en itérant successivement par f, on finit par retomber sur i_a . On regarde la première fois où on retrouve i_a et ce n'est pas à la première itération car $f(j) \ne j$ pour tout j. On trouve des indices $i_a, i_{a+1}, \ldots, i_{a+p-1}$ avec $p \ge 2$ deux à deux distincts images succesifs les uns des autres par f et avec $f(i_{a+p-1}) = f(i_a)$.

En posant $j_1=i_a,\ j_2=i_{a+1},\ \ldots,\ j_p=i_{a+p-1},$ on a des éléments deux à deux distincts et

$$\forall k \in [1; p-1], \ f(j_k) = j_{k+1} \ \text{et} \ f(j_p) = j_1$$

18. Un algorithme possible est le suivant.

Algorithme 1:

```
Données : f : une application de [1;n] dans lui-même sans point fixe
Résultat : un cycle pour f
/* on commence par chercher les éléments i_a et i_b
liste = [1];
k = 1;
tant que f(k) \notin \text{liste faire}
   liste.append(f(k));
   k = f(k)
fintq
/* à la sortie de la boucle, f(\boldsymbol{k}) contient i_a
                                                                */;
i = f(k);
liste =[i];
k = f(i);
tant que k! = i faire
   liste.append(k);
  k = f(k)
fintq
```

19. N est une matrice comportant p coefficients non nuls, égaux à 1.

Plus précisément, il y a un coefficient 1 sur chaque ligne j_1, \ldots, j_p et aussi un sur chaque colonne $f(j_1), \ldots, f(j_p) = j_2, \ldots, j_p, j_1$. On en déduit que le vecteur $\sum_{k=1}^p e_{j_k}$ est un vecteur propre pour N associé à la valeur propre 1.

Ceci est contradictoire car $N \in V$ (comme somme d'éléments de V qui est un espace vectoriel) et ne devrait posséder aucune valeur propre non nulle. Ceci achève le raisonnement par l'absurde.

D. Cas général

20. Soit $M \in V$ telle que L(M) = 0 et K(M) = 0. Puisque $C_n(V) = 0$, ces conditions impliquent que M = 0. Autrement dit, $\operatorname{Ker} L \cap \operatorname{Ker} K = \{0\}$.

La formule du rang appliquée à la restriction de K à $W = \operatorname{Ker} L$ donne alors :

$$\dim(K(W)) = \operatorname{rg}(K|_W) = \dim W - \dim(\operatorname{Ker} K|_W) = \dim W - \dim(\operatorname{Ker} K \cap W) = \dim W.$$

Or la formule du rang appliquée à L donne :

$$\dim V = \dim \operatorname{Ker} L + \operatorname{rg} L = \dim W + \operatorname{rg} L,$$

donc dim $V = \dim(K(W)) + \operatorname{rg} L$, et puisque $\operatorname{rg} L \leq \dim(\mathcal{M}_{1,n-1}(\mathbb{K})) = n-1$, on a l'inégalité cherchée :

$$\dim(V) = \leqslant \dim(K(W)) + n - 1.$$

21. Soit $M \in W$; on a $M = \begin{bmatrix} K(M) & R(M) \\ 0 & a(M) \end{bmatrix}$ qui est quasi nilpotente (car dans V) et ses valeurs propres sont celles de K(M) et a(M). Ainsi K(M) n'a pas de valeur propre non nulle (et a(M) = 0). Ceci montre que l'espace vectoriel K(W) est quasi-nilpotent. D'après l'hypothèse de récurrence, sa dimension est plus petite que $\frac{(n-1)(n-2)}{2}$.

La question précédente donne alors

$$\dim(V) \leqslant \frac{(n-1)(n-2)}{2} + (n-1) = \frac{n(n-1)}{2}$$
.

22. D'après le lemme des colonnes, il existe j tel que $C_j(V) = \{0\}$. Considérons la permutation σ qui échange j et n. V^{σ} est alors isomorphe à V et est un espace vectoriel quasi-nilpotent auquel on peut appliquer le cas précédent. On a donc :

$$\dim(V) = \dim(V^{\sigma}) \leqslant \frac{n(n-1)}{2} \cdot$$