CORRIGÉ DU DS°1

I. DÉVELOPPEMENT D'UN NOMBRE IRRATIONNEL EN FRACTION CONTINUE

A. Réduites d'une fraction continue.

I.1. Par définition, $q_0 = 1 \ge 0$ et a_1, a_2 sont dans \mathbb{N}^* , donc $q_1 = a_1 \ge 1$ et $q_2 = a_2q_1 + q_0 \ge 2$. Si, pour $n \ge 3$, l'on suppose $q_k \ge k$ pour tout k de [0, n-1], alors

$$q_n = a_n \cdot q_{n-1} + q_{n-2} \ge 1 \cdot (n-1) + (n-2) \ge n \quad \text{car } n \ge 3.$$

On a ainsi prouvé le résultat par récurrence.

I.2. Pour n = 1, $p_1q_0 - q_1p_0 = (a_0a_1 + 1) - a_1a_0 = 1$ et, pour $n \ge 2$:

$$p_n q_{n-1} - q_n p_{n-1} = (a_n p_{n-1} + p_{n-2}) q_{n-1} - (a_n q_n + q_{n-2}) p_{n-1} = -(p_{n-1} q_{n-2} - q_{n-1} p_{n-2}).$$

Par conséquent et par une récurrence immédiate :

$$\forall n \in \mathbb{N}^*, \quad p_n q_{n-1} - q_n p_{n-1} = (-1)^{n-1}.$$

I.3. Pour $n \ge 2$:

$$p_n q_{n-2} - q_n p_{n-2} = (a_n p_{n-1} + p_{n-2}) q_{n-2} - (a_n q_{n-1} + q_{n-2}) p_{n-2} = a_n (p_{n-1} q_{n-2} - q_{n-1} p_{n-2}).$$

Soit, d'après le résultat précédent :

$$\forall n \ge 2$$
, $p_n q_{n-2} - q_n p_{n-2} = (-1)^n a_n$.

- **I.4.** Étude de la suite $(r_n)_{n\in\mathbb{N}}$.
 - **I.4.a.** Grâce aux deuxquestions précédentes, on obtient immédiatement, après réduction au même dénominateur :

pour
$$n \ge 1, r_n - r_{n-1} = \frac{(-1)^{n-1}}{q_{n-1}q_n}$$
 et, pour $n \ge 2, r_n - r_{n-2} = \frac{(-1)^n a_n}{q_{n-2}q_n}$.

I.4.b. Puisque les a_k et les q_k sont positifs, le calcul ci-dessus montre que $r_n - r_{n-2}$ est du signe de $(-1)^n$, donc la suite (r_{2n}) est croissante et la suite (r_{2n+1}) est décroissante.

De plus, d'après **I.1.**, $q_{n-1}q_n \xrightarrow[n \to \infty]{} +\infty$, donc $r_n - r_{n-1} \xrightarrow[n \to \infty]{} 0$, d'après le résultat précédent; en particulier, la suite $(r_{2n+1} - r_{2n})$ converge vers 0. En conclusion, par définition :

les suites
$$(r_{2n})_{n \in \mathbb{N}}$$
 et $(r_{2n+1})_{n \in \mathbb{N}}$ sont adjacentes.

I.4.c. Il résulte du cours que ces deux suites ont une limite commune α . C'est alors un exercice classique que de montrer que la suite entière $(r_n)_{n\in\mathbb{N}}$ converge. En effet, par définition des limites, si on se donne $\epsilon > 0$:

$$\exists n_0 \in \mathbb{N} \text{ tq } n \geqslant n_0 \Longrightarrow |r_{2n} - \alpha| \leqslant \varepsilon \quad \text{ et } \quad \exists n_1 \in \mathbb{N} \text{ tq } n \geqslant n_1 \Longrightarrow |r_{2n+1} - \alpha| \leqslant \varepsilon$$

donc on aura

$$\forall n \in \mathbb{N}, \ n \ge \max(2n_0, 2n_1 + 1) \Longrightarrow |r_n - \alpha| \le \varepsilon$$

ce qui est exactement la définition de : $\lim_{n \to +\infty} r_n = \alpha$.

- **I.4.d.** En reprenant les arguments de **I.4.b**, puisque les a_k sont strictement positifs pour $k \ge 1$, on obtient que la suite $(r_{2n})_{n \in \mathbb{N}}$ est *strictement* croissante de limite α et que la suite $(r_{2n+1})_{n \in \mathbb{N}}$ est *strictement* décroissante de limite α , donc pour tout entier n on aura $r_{2n} < \alpha < r_{2n+1}$, puis $0 < \alpha r_{2n} < r_{2n+1} r_{2n}$.
 - On en déduit, comme on a supposé $\alpha = \frac{c}{d}$, et en utilisant I.2.

$$0 < \frac{cq_{2n} - dp_{2n}}{dq_{2n}} < \frac{1}{q_{2n}q_{2n+1}} \cdot$$

D'où, en multipliant par dq_{2n} (strictement positif!)

$$k_n = cq_{2n} - dp_{2n}$$
 est entier et vérifie $0 < k_n < \frac{d}{q_{2n+1}}$.

Il en résulte que $\frac{d}{q_{2n+1}} > 1$ pour tout n, ce qui contredit le **I.1.**, d étant fixé.

On a donc prouvé par l'absurde que α n'est pas rationnel.

B. Injectivité de F.

I.5.

I.5.a. Un calcul simple donne

$$[a_0, a_1] = \frac{a_0 a_1 + 1}{a_1} = \frac{p_1}{q_1}$$
 et $[a_0, a_1, a_2] = \frac{a_0 a_1 a_2 + a_0 + a_2}{a_1 a_2 + 1} = \frac{p_2}{q_2}$.

- **I.5.b.** Soit $\mathcal{P}(n)$ la propriété : « $[a_0,\ldots,a_n]=\frac{p_n}{q_n}$ ».
 - $\mathcal{P}(0)$ est vraie puisque $p_0 = a_0$ et $q_0 = 1$, et le calcul précédent montre que $\mathcal{P}(1)$ et $\mathcal{P}(2)$ le sont aussi.
 - Supposons $\mathcal{P}(n)$ vérifiée. Alors, $[a_0,\ldots,a_n]=\frac{p_n}{q_n}=\frac{a_np_{n-1}+p_{n-2}}{a_nq_{n-1}+q_{n-2}}$, où $p_{n-1},p_{n-2},q_{n-1},q_{n-2}$ ne dépendent que de a_0,\ldots,a_{n-1} ; remplacer a_n par $a_n+\frac{1}{a_{n+1}}$ conduira donc à

$$\left[a_0, \dots, a_{n-1}, a_n + \frac{1}{a_{n+1}}\right] = \frac{\left(a_n + \frac{1}{a_{n+1}}\right) p_{n-1} + p_{n-2}}{\left(a_n + \frac{1}{a_{n+1}}\right) q_{n-1} + q_{n-2}} = \frac{a_{n+1} \left(a_n p_{n-1} + p_{n-2}\right) + p_{n-1}}{a_{n+1} \left(a_n q_{n-1} + q_{n-2}\right) + q_{n-1}},$$

soit, par définition des suites (p_n) et (q_n) :

$$[a_0, \dots, a_n, a_{n+1}] = \left[a_0, \dots, a_{n-1}, a_n + \frac{1}{a_{n+1}}\right] = \frac{p_{n+1}}{q_{n+1}}$$

ce qui est le résultat voulu à l'ordre n+1 et achève la récurrence.

I.6.

- **I.6.a.** D'après **I.4.**, $r_0 = a_0 < \alpha < r_1 = a_0 + \frac{1}{a_1}$; or $a_1 \ge 1$, donc $a_0 \le \alpha < a_0 + 1$; puisque a_0 est entier on a donc $a_0 = \lfloor \alpha \rfloor$.
- I.6.b. Il est facile de vérifier la relation :

$$\forall n \in \mathbf{N}^*, \quad r_n = [a_0, \dots, a_n] = a_0 + \frac{1}{[a_1, \dots, a_n]},$$

d'où, pour n tendant vers l'infini : $\alpha = a_0 + \frac{1}{\alpha_1}$. En appliquant, pour k fixé dans \mathbb{N} , ce même résultat à la suite $(a_{k+n})_{n\in\mathbb{N}}$, qui est aussi dans S, on obtient :

$$\forall k \in \mathbb{N}, \quad \alpha_k = a_k + \frac{1}{\alpha_{k+1}}.$$

I.6.c. On en déduit comme au **I.6.a.** que $a_k = E(\alpha_k)$ pour tout k. Ainsi, à partir de la valeur de α , la suite (a_n) se construit par récurrence, parallèlement à la suite (α_n) , grâce aux relations suivantes :

$$\alpha_0 = \alpha$$
, $a_0 = \lfloor \alpha \rfloor$ et $\forall k \in \mathbb{N}$ $\alpha_{k+1} = \frac{1}{\alpha_k - a_k}$, $a_{k+1} = \lfloor \alpha_{k+1} \rfloor$.

Cela montre, pour α donné, l'unicité de la suite a telle $\alpha = F(a)$. Par conséquent, F est injective.

C. Surjectivité de F.

I.7.

- **I.7.a.** Montrons par récurrence sur $n \in \mathbb{N}$ que $\alpha_n \in \mathbb{Q}$.
 - Cette proposition est vraie au rang n=0, puisque $\alpha_0=x\in\mathbb{Q}$ par hypothèse.
 - Supposons qu'à un rang n donné on a $\alpha_n \in \mathbb{Q}$. Alors $y_n = \alpha_n \lfloor \alpha_n \rfloor$ est aussi rationnel et, puisqu'il est supposé non nul, on a $\alpha_{n+1} = \frac{1}{y_n} \in \mathbb{Q}$, ce qui établit la proposition au rang n+1.
 - Pour $n \ge 1$, $\alpha_n = \frac{1}{y_{n-1}}$ avec $y_{n-1} = \alpha_{n-1} \lfloor \alpha_{n-1} \rfloor$ dans]0,1[, donc on a bien $\alpha_n > 1$.
- **I.7.b.** Montrons par récurrence sur $n \in \mathbb{N}$ que $v_n > 0$ et $\alpha_n = \frac{u_n}{v_n}$

- Cette proposition est vraie au rang n=0, car $v_0\in\mathbb{N}^*$ et $\alpha_0=\frac{u_0}{v_0}$ par hypothèse.
- Supposons qu'à un rang n>0 donné, on ait $v_n>0$ et $\alpha_n=\frac{u_n}{v_n}$.

La division euclidienne de u_n par v_n s'écrit : $u_n = v_n q_n + v_{n+1}$, avec $q_n \in \mathbb{Z}$ le quotient et $v_{n+1} \in \mathbb{N}$ le reste tel que $0 \le v_{n+1} < v_n$.

$$\mathrm{Donc}\ \frac{u_n}{v_n} = q_n + \frac{v_{n+1}}{v_n}\ \mathrm{avec}\ 0 \leqslant \frac{v_{n+1}}{v_n} < 1\ \mathrm{ce}\ \mathrm{qui}\ \mathrm{implique}\ \left\lfloor\frac{u_n}{v_n}\right\rfloor = q_n\,.$$

Si v_{n+1} était nul, on aurait $\frac{u_n}{v_n} = q_n$ d'où $y_n = \alpha_n - \lfloor \alpha_n \rfloor = \frac{u_n}{v_n} - q_n = 0$ ce qui est exclu.

Ainsi $v_{n+1} > 0$. De plus, $\alpha_{n+1} = \frac{1}{y_n} = \frac{1}{\alpha_n - \lfloor \alpha_n \rfloor} = \frac{1}{\frac{u_n}{v_n} - q_n} = \frac{1}{\frac{v_{n+1}}{v_n}} = \frac{v_n}{v_{n+1}} = \frac{u_{n+1}}{v_{n+1}}$, ce qui établit la proposition au rang n+1 et achève la récurrence.

I.7.c. On a montré ci-dessus que pour tout n, $0 \le v_{n+1} < v_n$, donc la suite (v_n) est strictement décroissante et constituée d'entiers. Donc pour tout n $v_{n+1} \le v_n - 1$ et par une récurrence immédiate, on vérifie que alors, $v_n \le v_0 - n$; une telle suite aurait pour limite $-\infty$, ce qui est impossible car on a vu que tous les termes v_n sont positifs.

L'hypothèse de **I.7** est donc impossible, ce qui signifie que, si x est rationnel, il existe un rang n_0 tel que $y_{n_0} = 0$ et a_{n_0+1} ne peut être défini.

- **I.8.** On vient de voir que, si x est rationnel, a_n ne peut être défini pour tout n.
 - De plus, il est facile de vérifier par récurrence que, si x est irrationnel, les α_n et les y_n sont irrationnels; en particulier, on ne peut pas avoir $y_n = 0$ et la suite (a_n) est bien définie sur \mathbb{N} .

En conclusion : a_n existe pour tout n si et seulement si x est irrationnel.

I.9.

- **I.9.a.** On a bien $a_0 = \lfloor x \rfloor \in \mathbb{Z}$ et on montre comme dans **I.7.a** que, pour $n \ge 1$, on a $\alpha_n > 1$. Donc $a_n = |\alpha_n| \in \mathbb{N}^*$, et la suite $(a_n)_{n \in \mathbb{N}}$ est bien dans S.
- **I.9.b.** Démontrons par récurrence sur $n \in \mathbb{N}$ la propriété : $x = [a_0, \dots, a_n, \alpha_{n+1}]$.
 - Pour n=0, $[a_0,\alpha_1]=a_0+\frac{1}{\alpha_1}=a_0+y_0=\alpha_0=x$, la propriété est vérifiée.
 - Supposons l'égalité vraie au rang n. Alors :

$$x = [a_0, \dots, a_n, \alpha_{n+1}] = [a_0, \dots, a_n, a_{n+1} + y_{n+1}]$$
$$= \left[a_0, \dots, a_n, a_{n+1} + \frac{1}{\alpha_{n+2}}\right] = [a_0, \dots, a_n, a_{n+1}, \alpha_{n+2}]$$

d'après la propriété rappelée par l'énoncé, ce qui est le résultat cherché à l'ordre n+1.

I.9.c. Pour tout entier n, il est facile de vérifier que la fonction

$$\varphi_n : x \in \mathbb{R}_+^* \mapsto [a_0, \dots, a_n, x] = a_0 + \frac{1}{a_1 + \frac{1}{a_1 + \frac{1}{x}}}$$

est décroissante si n est pair et croissante si n est impair (il suffit de faire une simple récurrence en remarquant que $\varphi_{n+1}(x) = \varphi_n\left(a_{n+1} + \frac{1}{x}\right)$, donc φ_{n+1} est la composée de φ_n et d'une fonction décroissante).

On aura donc, puisque φ_{2n-1} est croissante sur \mathbb{R}_+^* :

$$r_{2n} = [a_0, \dots, a_{2n-1}, a_{2n}] \le [a_0, \dots, a_{2n-1}, \alpha_{2n}] = x$$
question
préc.

puisque $a_{2n} = \lfloor \alpha_{2n} \rfloor \leq \alpha_{2n}$.

L'inégalité $x \le r_{2n+1}$ se démontre de la même façon en utilisant la décroissance de φ_{2n} .

- **I.9.d.** On a vu à la question **I.4** que la suite (r_n) converge vers F(a). D'après la question précédent, on a donc x = F(a), c'est-à-dire que pour tout irrationnel x la suite a construite au début de la question **I.7.** est telle que F(a) = x; x a donc un antécédent dans S pat F, et F est surjective.
- **I.10.** Pour $x = \sqrt{3} \approx 1,732$, $a_0 = \lfloor \sqrt{3} \rfloor = 1$, $y_0 = \sqrt{3} 1$, $\alpha_1 = \frac{1}{\sqrt{3} 1} = \frac{\sqrt{3} + 1}{2}$, $a_1 = 1$, $y_1 = \frac{\sqrt{3} 1}{2}$, $\alpha_2 = \frac{2}{\sqrt{3} 1} = \sqrt{3} + 1$, $a_2 = 2$, $y_2 = \sqrt{3} 1$.

Ainsi $y_2 = y_0$, donc ensuite $\alpha_3 = \alpha_1$, $a_3 = a_1$, $y_3 = y_1$ etc... La suite a est donc 2-périodique à partir du rang 1, et le développement en fraction continue de $\sqrt{3}$ s'écrit

$$\sqrt{3} = [1, 1, 2, 1, 2, 1, 2, \dots]$$

II. APPROXIMATION DE LA FONCTION TANGENTE HYPERBOLIQUE PAR UNE SUITE DE FONCTIONS RATIONNELLES

- A. Étude d'une suite de fonctions.
- II.1. La fonction $t \mapsto -2tf_0(t) = -2t \operatorname{sh} t$ est de classe \mathscr{C}^{∞} sur \mathbb{R} , donc $f_1: x \mapsto \int_0^x -2tf_0(t) \, \mathrm{d}t$ est de classe \mathscr{C}^{∞} sur \mathbb{R} puisque c'en est la primitive qui s'annule en 0.

Si l'on suppose f_n de classe \mathscr{C}^{∞} sur \mathbb{R} , le même raisonnement montre que f_{n+1} est aussi de classe \mathscr{C}^{∞} sur \mathbb{R} d'où le résultat demandé par récurrence sur n.

II.2. On fait de banales intégrations par parties; pour tout $x \in \mathbb{R}$:

$$f_1(x) = \int_0^x \underbrace{-2t}_{=u} \underbrace{\sinh t}_{=v'} dt = \left[-2t \cosh t \right]_0^x - \int_0^x \underbrace{(-2)}_{=u'} \underbrace{\cosh t}_{=v} dt = -2x \cosh x + 2 \int_0^x \cosh t \, dt = -2x \cosh x + 2 \sinh x$$

$$f_2(x) = \int_0^x \underbrace{4t^2}_{=u} \underbrace{\cosh t}_{=v'} dt - 4 \int_0^x t \sinh t dt = \left[4t^2 \sinh t\right]_0^x - \int_0^x \underbrace{8t}_{=u'} \underbrace{\sinh t}_{=v} dt - 4 \int_0^x t \sinh t dt$$
$$= 4x^2 \sinh x - 12 \int_0^x t \sinh t dt = 4x^2 \sinh x + 6f_1(x) = 4x^2 \sinh x - 12x \cosh x + 12 \sinh x.$$

- **II.3.** On démontre la relation proposée par récurrence sur n.
 - Les calculs précédents montrent que l'égalité est vraie pour n=2.
 - Supposons que l'on ait, à un rang n donné, $f_n(x) = 2(2n-1)f_{n-1}(x) + 4x^2f_{n-2}(x)$ pour tout x réel. Puisque les deux fonctions f_{n+1} et $x \mapsto 2(2n+1)f_n(x) + 4x^2f_{n-1}(x)$ sont de classe \mathscr{C}^1 et s'annulent en 0, leur égalité (qui est la propriété à démontrer à l'ordre n+1) équivaut à l'égalité de leurs dérivées, c'est-à-dire de f'_{n+1} et de $x \mapsto 2(2n+1)f'_n(x) + 4x^2f'_{n-1}(x) + 8xf_{n-1}(x)$.

Or d'une part : $f'_{n+1}(x) = -2xf_n(x)$ et, d'autre part :

$$\begin{split} 2(2n+1)f_n'(x) + 4x^2f_{n-1}'(x) + 8xf_{n-1}(x) &= 2(2n+1)(-2xf_{n-1}(x)) + 4x^2(-2xf_{n-2}(x)) + 8xf_{n-1}(x) \\ &= 2(2n-1)(-2xf_{n-1}(x)) + 4x^2(-2xf_{n-2}(x)) \\ &= -2x\big(2(2n-1)f_{n-1}(x) + 4x^2f_{n-2}(x)\big) \\ &= -2xf_n(x) \text{ d'après l'hypothèse de récurrence} \end{split}$$

L'égalité cherchée à l'ordre n+1 est donc bien établie.

II.4.

II.4.a. Soient P et Q deux polynômes tels que $\forall x \in \mathbb{R}$, $Q(x) \operatorname{sh} x - P(x) \operatorname{ch} x = 0$. Alors pour tout $x \in \mathbb{R}$ on a $e^x(P(x) - Q(x)) = e^{-x}(P(x) + Q(x))$.

Par croissances comparées, le membre de droite de cette égalité tend vers 0 quand $x \to +\infty$. On a donc $\lim_{x \to +\infty} \mathbf{e}^x \big(\mathbf{P}(x) - \mathbf{Q}(x) \big) = 0$, ce qui n'est possible que si $\mathbf{P} - \mathbf{Q}$ est le polynôme nul (car le produit d'un polynôme non nul par \mathbf{e}^x tend vers $\pm \infty$ quand $x \to +\infty$).

Donc Q = P puis $e^{-x}(P(x) + Q(x)) = 0$ pour tout x d'où Q = -P et finalement P = Q = 0.

II.4.b et c.

• S'il existe des polynômes P_n et Q_n tels que : $\forall x \in \mathbb{R}$, $f_n(x) = Q_n(x) \operatorname{sh} x - P_n(x) \operatorname{ch} x$, ils sont uniques d'après la question précédente : en effet, si l'on a

$$\forall x \in \mathbb{R}, \ Q_n(x) \operatorname{sh} x - P_n(x) \operatorname{ch} x = R_n(x) \operatorname{sh} x - T_n(x) \operatorname{ch} x \quad \text{avec } Q_n, P_n, R_n, T_n \text{ polynômes}$$

alors

$$\forall x \in \mathbb{R}, \ \left(Q_n(x) - R_n(x)\right) \operatorname{sh} x - \left(P_n(x) - T_n(x)\right) \operatorname{ch} x = 0$$

d'où $Q_n - R_n = P_n - T_n = 0$.

- Démontrons l'existence de polynômes P_n et Q_n tels que : $\forall x \in \mathbb{R}, \ f_n(x) = Q_n(x) \operatorname{sh} x P_n(x) \operatorname{ch} x$ par récurrence sur n.
- Les calculs faits en II.2 montrent que l'on a

$$P_0 = 0$$
, $Q_0 = 1$, $P_1(x) = 2x$, $Q_1(x) = 2$

ce qui établit la propriété pour n=0 et n=1.

- Supposons l'existence de ces polynômes établie aux rangs n-1 et n-2 pour $n \ge 2$. Alors

$$\forall x \in \mathbb{R}, \ f_n(x) = 2(2n-1)f_{n-1}(x) + 4x^2 f_{n-2}(x)$$

$$= 2(2n-1)(Q_{n-1}(x) \operatorname{sh} x - P_{n-1}(x) \operatorname{ch} x) + 4x^2 (Q_{n-2}(x) \operatorname{sh} x - P_{n-2}(x) \operatorname{ch} x)$$

$$= [2(2n-1)Q_{n-1}(x) + 4x^2 Q_{n-2}(x)] \operatorname{sh} x - [2(2n-1)P_{n-1}(x) + 4x^2 P_{n-2}(x)] \operatorname{ch} x$$

de sorte que l'on obtient la relation voulue en posant $P_n(x) = 2(2n-1)P_{n-1}(x) + 4x^2P_{n-2}(x)$ et $Q_n(x) = 2(2n-1)Q_{n-1}(x) + 4x^2Q_{n-2}(x)$, ces égalités définissant bien des polynômes .

II.4.d. Récurrence...

II.4.e. Là encore on démontre simultanément les deux propriétés par récurrence sur n.

- Elles sont facilement vérifiées pour n = 0 et n = 1.
- Supposons-les démontrées aux rangs n-1 et n-2 pour $n \ge 2$. Alors, compte tenu des relations trouvées en **II.4.c** :

$$Q_n(0) = 2(2n-1)Q_{n-1}(0) = 2(2n-1)\frac{(2n-2)!}{(n-1)!} = \frac{(2n)(2n-1)}{n}\frac{2n-2)!}{(n-1)!} = \frac{(2n)!}{n!}$$

puis, pour tout $x \in \mathbb{R}$

$$\begin{aligned} \mathbf{Q}_n(x) &= 2(2n-1)\mathbf{Q}_{n-1}(x) + 4x^2\mathbf{Q}_{n-2}(x) \geqslant 2(2n-1)\mathbf{Q}_{n-1}(x) + 4x^2\mathbf{Q}_{n-2}(0) \\ &\geqslant 2(2n-1)\mathbf{Q}_{n-1}(x) \geqslant 2(2n-1)\mathbf{Q}_{n-1}(0) = \mathbf{Q}_n(0) \end{aligned}$$

ce qui démontre les deux propriétés à l'ordre n et achève la démonstration par récurrence.

B. Suite de fonctions rationnelles convergeant vers la fonction th .

- **II.5.** On procède (encore...) par récurrence sur n.
 - L'inégalité est immédiate pour n = 0.
 - Si elle est vérifiée au rang n alors, pour tout réel $x \geq 0$:

$$|f_{n+1}(x)| \le \int_0^x |2t f_n(t)| \, \mathrm{d}t \quad \text{(bornes « dans le bon sens » !)}$$

$$\le \int_0^x \frac{2t^{2n+1}}{n!} \operatorname{sh} t \, \mathrm{d}t \le \frac{2 \operatorname{sh} x}{n!} \int_0^x t^{2n+1} \, \mathrm{d}t = \frac{2 \operatorname{sh} x}{n!} \frac{x^{2n+2}}{2n+2} = \frac{x^{2n+2}}{(n+1)!}$$

ce qui est l'inégalité au rang n+1.

II.6. Donc, pour tout $x \in \mathbb{R}_+$:

$$\left| \frac{\operatorname{sh} x}{\operatorname{ch} x} - \frac{\operatorname{P}_n(x)}{\operatorname{Q}_n(x)} \right| = \left| \frac{f_n(x)}{\operatorname{ch} x \operatorname{Q}_n(x)} \right| \leqslant \frac{x^{2n}}{n!} \operatorname{th} x \frac{1}{\operatorname{Q}_n(x)}$$

et puisque l'on a trouvé en **II.4.e.** : $Q_n(x) \ge \frac{(2n)!}{n!}$ et que th $x \le 1$, on en déduit bien $\left| \operatorname{th} x - \frac{P_n(x)}{Q_n(x)} \right| \le \frac{x^{2n}}{(2n)!}$.

II.7. Puisque les fonctions the $x \mapsto \frac{P_n(x)}{Q_n(x)}$ sont impaires (cf. II.4.d.), on déduit de l'inégalité précédente :

$$\forall x \in \mathbb{R}, \ \left| \operatorname{th} x - \frac{P_n(x)}{Q_n(x)} \right| \le \frac{|x|^{2n}}{(2n)!}.$$

D'après les croissances comparées, $\lim_{n\to+\infty} \frac{|x|^{2n}}{(2n)!} = 0$ ce qui prouve que $\lim_{n\to+\infty} \frac{P_n(x)}{Q_n(x)} = \operatorname{th} x$ pour tout x réel.

C. Développement en fraction continue de th(1/2) et de e.

II.8.

II.8.a. Résulte immédiatement des relations trouvées en II.4.c.

II.8.b. Considérons la suite $(a_n)_{n\in\mathbb{N}}$ définie par $a_0=0$ et $a_n=2(2n-1)$ pour $n\geqslant 1$. Cette suite est bien élément de S, et si l'on considère les suites $(p_n)_{n\in\mathbb{N}}$ et $(q_n)_{n\in\mathbb{N}}$ associées à a comme dans le début de la partie **I.**, elles vérifient les mêmes conditions initiales et les mêmes relations de récurrence que les suites $(p'_n)_{n\in\mathbb{N}}$ et $(q'_n)_{n\in\mathbb{N}}$.

Ce sont donc les mêmes suites et par conséquent, la suite $\left(\frac{p'_n}{q'_n}\right)_n$ est exactement la suite des réduites associées à la suite a. Puisque cette suite converge vers th $\frac{1}{2}$, on aura donc le développement en fraction continue th $\frac{1}{2} = [a_0, a_1, \ldots]$ ou encore :

th
$$\frac{1}{2} = [0, 2, 6, 10, \dots, 2(2n-1), \dots]$$

II.9.

II.9.a. D'après la définition des réduites (**I.A.**), on a $y_n = b_n y_{n-1} + y_{n-2}$ d'où en particulier

$$y_{3n-2} = y_{3(n-1)+1} = y_{3n-3} + y_{3n-4} \; , \; y_{3n-6} = y_{3(n-2)} = y_{3n-7} + y_{3n-8} \; , \; y_{3n-3} = y_{3n-4} + y_{3n-5}$$
 puis

$$y_{3n-2} - 2(2n-1)y_{3n-5} - y_{3n-8} = (y_{3n-3} + y_{3n-4}) - 2(2n-1)y_{3n-5} - y_{3n-6} + y_{3n-7}$$
$$= (2y_{3n-4} + y_{3n-5} - 2(2n-1)y_{3n-5} - y_{3n-6} + y_{3n-7})$$

et puisque

 $y_{3n-5} = y_{3(n-2)+1} = y_{3n-6} + y_{3n-7}$ et $y_{3n-4} = y_{3(n-2)+2} = [2(n-2)+2]y_{3n-5} + y_{3n-6}$ on about it à

$$y_{3n-2} - 2(2n-1)y_{3n-5} - y_{3n-8} = 2y_{3n-4} + 2y_{3n-5} - 2(2n-1)y_{3n-5} - 2y_{3n-6}$$
$$= 2(2n-2)y_{3n-5} + 2y_{3n-6} - 2(2n-1)y_{3n-5} - 2y_{3n-6}$$
$$= 0$$

ce qu'il fallait démontrer (ouf!). On obtient bien sûr la même relation pour les z_n .

II.9.b. Compte tenu des résultats de **II.8.a.** et de **II.9.a.**, on constate que les suites $(y_{3n-2})_{n\geqslant 1}$ et $(p'_n+q'_n)_{n\geqslant 1}$ vérifient la même relation de récurrence linéaire d'ordre deux ; de plus, un peu de calcul donne $y_1=3=p'_1+q'_1$ et $y_4=19=p'_2+q'_2$, donc les deux suites coïncident pour tout entier $n\geqslant 1$. Idem pour les suites $(z_{3n-2})_{n\geqslant 1}$ et $(q'_n-q'_n)_{n\geqslant 1}$.

II.9.c. On a vu dans la partie **I.** que la suite des réduites $\left(\frac{y_n}{z_n}\right)_n$ converge vers α . Il en est donc de même de la suite extraite $\left(\frac{y_{3n-2}}{z_{3n-2}}\right)_{n\geq 1}$.

De plus, $\lim_{n\to+\infty}\frac{q'_n+p'_n}{q'_n-p'_n}=\lim_{n\to+\infty}\frac{1+\frac{p'_n}{q'_n}}{1-\frac{p'_n}{q'_n}}=\frac{1+\operatorname{th}\frac{1}{2}}{1-\operatorname{th}\frac{1}{2}}=\mathbf{e}$ donc d'après **II.9.b** $\mathbf{e}=\alpha$, c'est-à-dire que le développement en fraction continue de \mathbf{e} est précisément $[2,b_1,b_2,\ldots,b_n,\ldots]$

