DS n°5 (le 13/01/2018)

SUJET n°1 (1 exercice + 1 problème)

EXERCICE (extrait de E3A MP 2016)

On considère les fonctions F et G définies par :

$$F(x) = \sum_{n=1}^{+\infty} \frac{1}{1 + 4n^2 x^2} \quad et \quad G(x) = \int_0^{+\infty} \frac{\sin t}{e^{2xt} - 1} dt.$$

1. Pour un réel x > 0, justifier la convergence de l'intégrale :

$$\int_0^{+\infty} \frac{1}{1 + 4t^2 x^2} dt$$

puis calculer sa valeur.

- **2.** Démontrer que F est définie sur \mathbb{R}^* et étudier la parité de F.
- **3.** Soient a et b des réels avec b>a>0. Démontrer que F est de classe \mathscr{C}^1 sur $[a\,;b]$. Que peut-on en déduire?
- **4.** Pour x > 0 et $n \in \mathbb{N}^*$, justifier l'inégalité :

$$\frac{1}{1+4n^2x^2} \leqslant \int_{n-1}^n \frac{1}{1+4t^2x^2} \mathrm{d}t$$

puis établir que $F(x) \leqslant \int_0^{+\infty} \frac{1}{1 + 4t^2x^2} dt$.

- 5. Pour x>0, démontrer de même l'inégalité : $\int_0^{+\infty}\frac{1}{1+4t^2x^2}\mathrm{d}t-1\leqslant F(x)\;.$
- **6.** En déduire un équivalent de F(x) lorsque $x \to 0^+$ et la limite de F(x) lorsque $x \to +\infty$.
- 7. Étudier les variations de F puis représenter graphiquement la fonction F sur \mathbb{R}^* .
- 8. Démontrer que G est définie sur \mathbb{R}^{+*} .
- 9. Pour $\alpha \in \mathbb{R}^{+*}$, établir la convergence de l'intégrale :

$$I_{\alpha} = \int_{0}^{+\infty} \sin(t) e^{-\alpha t} dt$$

et calculer sa valeur.

10. Démontrer que quels que soient t > 0 et x > 0:

$$\frac{\sin t}{e^{2xt} - 1} = \sum_{n=1}^{+\infty} \sin(t)e^{-2nxt}.$$

11. En déduire une relation entre F et G (on justifiera la réponse).

PROBLÈME (E3A PSI 2016, 3 heures)

La **présentation**, la lisibilité, l'orthographe, la qualité de la **rédaction**, **la clarté et la précision** des raisonnements entreront pour **une part importante** dans l'appréciation des copies. En particulier, les résultats non justifiés ne seront pas pris en compte. Les candidats sont invité à **encadrer** les résultats de leurs calculs.

Préliminaires

Soit n un entier naturel non nul.

- 1. Soit $\theta \in [0; 2\pi[$. Déterminer, s'ils existent, module et argument du nombre complexe $u = 1 + e^{i\theta}$.
- **2.** On note P_n le polynôme de $\mathbb{C}[X]$ défini par :

$$P_n(X) = \frac{1}{2i} \left((X+i)^{2n+1} - (X-i)^{2n+1} \right).$$

- a) Étude des cas n = 1 et n = 2.
 - i) Déterminer les polynômes P_1 et P_2 .
 - ii) Vérifier que $P_1 \in \mathbb{R}_2[X]$ et que $P_2 \in \mathbb{R}_4[X]$. Sont-il irréductibles dans $\mathbb{R}[X]$?
- b) On revient au cas général.
 - i) Montrer que $P_n \in \mathbb{C}_{2n}[X]$. Donner son degré et son coefficient dominant.
 - ii) Soit $N \in \mathbb{N}^*$. Donner l'expression des racines N-ièmes de l'unité.
 - iii) Calculer $P_n(i)$.
 - iv) Prouver par un argument géométrique que les racines de P_n sont réelles.
 - v) Soit $a \in \mathbb{C}$. Prouver l'équivalence :

$$a$$
 est racine de $P_n \iff \exists k \in [1; 2n], \ a(e^{2ik\pi/(2n+1)} - 1) = i(e^{2ik\pi/(2n+1)} + 1)$

- vi) Déterminer les racines du polynôme P_n . Vérifier alors le résultat obtenu à la question 2.b.iv.
- vii) En développant P_n , déterminer un polynôme Q_n de degré n et à coefficients réels tel que :

$$P_n(X) = Q_n(X^2)$$

On admettra l'unicité du polynôme Q_n ainsi obtenu.

- viii) Expliciter Q_1 et Q_2 et déterminer leurs racines respectives.
- ix) Déterminer les racines de Q_n en fonction de celles de P_n .
- **3.** On pose $S_n = \sum_{k=1}^n \frac{1}{\tan^2(\frac{k\pi}{2n+1})}$.

En utilisant des résultats obtenus à la question précédente, montrer que $S_n = \frac{n(2n-1)}{3}$.

4. Illustrer graphiquement les inégalités suivantes que l'on admettra :

$$\forall x \in \left[0, \frac{\pi}{2}\right[, \ 0 \leqslant \sin(x) \leqslant x \leqslant \tan(x).$$

En déduire que

$$\forall x \in \left] 0, \frac{\pi}{2} \right[, \frac{1}{\tan^2(x)} \leqslant \frac{1}{x^2} \leqslant 1 + \frac{1}{\tan^2(x)}$$

5. Justifier la convergence de la série de terme général $\frac{1}{k^2}$ et calculer la somme $\sum_{k=1}^{+\infty} \frac{1}{k^2}$.

Partie I

Soit $x \in \mathbb{R}$. On note, lorsque cela a un sens, $H(x) = \int_0^1 \frac{t^x \ln(t)}{t-1} dt$.

- 1. Démontrer que pour s > -1, l'intégrale $J_s = \int_0^1 t^s \ln(t) dt$ existe et donner sa valeur.
- 2. Étude de la fonction H.
 - a) Montrer que l'ensemble de définition de la fonction H est $D_H =]-1; +\infty[$.

On admettra pour la suite que H est continue sur D_H .

- **b)** Montrer que H est monotone sur D_H .
- c) Soit (x_n) une suite réelle de limite $+\infty$. Déterminer $\lim_{n\to+\infty} H(x_n)$. En déduire $\lim_{x\to+\infty} H(x)$.
- d) Démontrer que :

$$\forall x > -1, \ H(x) - H(x+1) = \frac{1}{(x+1)^2}$$

- e) Déterminer alors un équivalent simple de H(x) lorsque x tend vers -1 par valeurs supérieures.
- **f)** Soit x > -1.
 - i) Justifier la convergence de la série $\sum_{k\geqslant 1} \frac{1}{(x+k)^2}$ ·
 - ii) Prouver que pour tout $n \in \mathbb{N}^*$,

$$H(x) = \sum_{k=1}^{n} \frac{1}{(x+k)^2} + H(x+n).$$

iii) En déduire que

$$H(x) = \sum_{k=1}^{+\infty} \frac{1}{(x+k)^2}$$

iv) Calculer H(0) et H(1).

Partie 2

1. Prouver que pour tout x > -1 et tout entier naturel k non nul,

$$\frac{1}{(x+k+1)^2} \leqslant \int_k^{k+1} \frac{\mathrm{d}t}{(x+t)^2} \leqslant \frac{1}{(x+k)^2} \cdot$$

- 2. Déterminer un équivalent de H(x) lorsque x tend vers $+\infty$.
- **3.** Pour tout entier naturel n, on pose $u_n = H(n)$.
 - a) Etudier la convergence des séries $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant 0}(-1)^nu_n$
 - b) Démontrer que

$$\sum_{n=0}^{+\infty} (-1)^n u_n = \int_0^1 \frac{\ln(v)}{v^2 - 1} \, \mathrm{d}v.$$

c) Donner la valeur de cette intégrale en fonction de $H\left(-\frac{1}{2}\right)$.

Partie 3

Pour tout entier naturel $k \ge 2$, on note :

$$Z_k = \sum_{p=1}^{+\infty} \frac{1}{p^k} \cdot$$

- 1. Pour tout couple d'entiers naturels (p,q), on pose $I_{p,q} = \int_0^1 t^p [\ln(t)]^q dt$.
 - a) Justifier l'existence de $I_{p,q}$.
 - **b)** Justifier que si $q \geqslant 1$, $I_{p,q} = -\frac{q}{p+1}I_{p,q-1}$.
 - c) En déduire la valeur de $I_{p,q}$.
- **2. a)** Justifier l'existence pour tout $n \in \mathbb{N}$ de $B_n = \int_0^1 \frac{[\ln(t)]^{n+1}}{t-1} dt$.
 - b) Exprimer B_n à l'aide des intégrales $I_{p,q}$. (On pourra utiliser la série de terme général t^p .)
 - c) Prouver enfin que $\forall n \in \mathbb{N}, \ B_n = (-1)^n (n+1)! Z_{n+2}$.
- 3. En déduire alors que :

$$\forall x \in]-1; 1[, H(x) = \sum_{k=0}^{+\infty} (-1)^k (k+1) Z_{k+2} x^k.$$